Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

被引:36
作者
Mukhtar, Musawwadah [1 ]
Soh, Wee Tee [1 ]
Saw, Thuan Beng [1 ]
Gong, Jiangbin [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[3] NUS Grad Sch Integrat Sci & Engn, Singapore 117597, Singapore
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 05期
关键词
SUDDEN-DEATH; SPIN;
D O I
10.1103/PhysRevA.82.052338
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e. g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Environment-induced sudden death of entanglement
    Almeida, M. P.
    de Melo, F.
    Hor-Meyll, M.
    Salles, A.
    Walborn, S. P.
    Ribeiro, P. H. Souto
    Davidovich, L.
    [J]. SCIENCE, 2007, 316 (5824) : 579 - 582
  • [2] Experimental Uhrig dynamical decoupling using trapped ions
    Biercuk, Michael J.
    Uys, Hermann
    VanDevender, Aaron P.
    Shiga, Nobuyasu
    Itano, Wayne M.
    Bollinger, John J.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [3] Optimized dynamical decoupling in a model quantum memory
    Biercuk, Michael J.
    Uys, Hermann
    VanDevender, Aaron P.
    Shiga, Nobuyasu
    Itano, Wayne M.
    Bollinger, John J.
    [J]. NATURE, 2009, 458 (7241) : 996 - 1000
  • [4] How to enhance dephasing time in superconducting qubits
    Cywinski, Lukasz
    Lutchyn, Roman M.
    Nave, Cody P.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2008, 77 (17)
  • [5] Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath
    de Lange, G.
    Wang, Z. H.
    Riste, D.
    Dobrovitski, V. V.
    Hanson, R.
    [J]. SCIENCE, 2010, 330 (6000) : 60 - 63
  • [6] Preserving quantum states using inverting pulses: A super-zeno effect
    Dhar, D
    Grover, LK
    Roy, SM
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (10)
  • [7] Preserving electron spin coherence in solids by optimal dynamical decoupling
    Du, Jiangfeng
    Rong, Xing
    Zhao, Nan
    Wang, Ya
    Yang, Jiahui
    Liu, R. B.
    [J]. NATURE, 2009, 461 (7268) : 1265 - 1268
  • [8] Dark periods and revivals of entanglement in a two-qubit system
    Ficek, Z.
    Tanas, R.
    [J]. PHYSICAL REVIEW A, 2006, 74 (02):
  • [9] Optimal dynamical decoherence control of a qubit
    Gordon, Goren
    Kurizki, Gershon
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (01)
  • [10] Universal dephasing control during quantum computation
    Gordon, Goren
    Kurizki, Gershon
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):