Recent advances in threshold-dependent gene drives for mosquitoes

被引:27
作者
Leftwich, Philip T. [1 ]
Edgington, Matthew P. [1 ]
Harvey-Samuel, Tim [1 ]
Paladino, Leonela Z. Carabajal [1 ]
Norman, Victoria C. [1 ]
Alphey, Luke [1 ,2 ]
机构
[1] Pirbright Inst, Woking, Surrey, England
[2] Univ Oxford, Dept Zool, Oxford, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 欧盟地平线“2020”;
关键词
STERILE INSECT TECHNIQUE; AEDES-AEGYPTI; CYTOPLASMIC INCOMPATIBILITY; MALARIA TRANSMISSION; LOCAL-POPULATIONS; PEST POPULATIONS; WMEL WOLBACHIA; DENGUE CONTROL; UNDERDOMINANCE; INFECTION;
D O I
10.1042/BST20180076
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia. Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.
引用
收藏
页码:1203 / 1212
页数:10
相关论文
共 68 条
[41]   Genetically engineered underdominance for manipulation of pest populations: A deterministic model [J].
Magori, K ;
Gould, F .
GENETICS, 2006, 172 (04) :2613-2620
[42]   RNA-Guided Human Genome Engineering via Cas9 [J].
Mali, Prashant ;
Yang, Luhan ;
Esvelt, Kevin M. ;
Aach, John ;
Guell, Marc ;
DiCarlo, James E. ;
Norville, Julie E. ;
Church, George M. .
SCIENCE, 2013, 339 (6121) :823-826
[43]   Confinement of gene drive systems to local populations: A comparative analysis [J].
Marshall, John M. ;
Hay, Bruce A. .
JOURNAL OF THEORETICAL BIOLOGY, 2012, 294 :153-171
[44]   Engineering species-like barriers to sexual reproduction [J].
Maselko, Maciej ;
Heinsch, Stephen C. ;
Chacon, Jeremy M. ;
Harcombe, William R. ;
Smanski, Michael J. .
NATURE COMMUNICATIONS, 2017, 8
[45]  
Min John., 2017, BioRxiv, page, P115618, DOI DOI 10.1101/115618
[46]   A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium [J].
Moreira, Luciano A. ;
Iturbe-Ormaetxe, Inaki ;
Jeffery, Jason A. ;
Lu, Guangjin ;
Pyke, Alyssa T. ;
Hedges, Lauren M. ;
Rocha, Bruno C. ;
Hall-Mendelin, Sonja ;
Day, Andrew ;
Riegler, Markus ;
Hugo, Leon E. ;
Johnson, Karyn N. ;
Kay, Brian H. ;
McGraw, Elizabeth A. ;
van den Hurk, Andrew F. ;
Ryan, Peter A. ;
O'Neill, Scott L. .
CELL, 2009, 139 (07) :1268-1278
[47]   The effect of Wolbachia on dengue dynamics in the presence of two serotypes of dengue: symmetric and asymmetric epidemiological characteristics [J].
Ndii, M. Z. ;
Allingham, D. ;
Hickson, R. I. ;
Glass, K. .
EPIDEMIOLOGY AND INFECTION, 2016, 144 (13) :2874-2882
[48]   The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced [J].
Ndii, Meksiallis Z. ;
Allingham, David ;
Hickson, R. I. ;
Glass, Kathryn .
THEORETICAL POPULATION BIOLOGY, 2016, 111 :9-15
[49]   Modelling the transmission dynamics of dengue in the presence of Wolbachia [J].
Ndii, Meksianis Z. ;
Hickson, R. I. ;
Allingham, David ;
Mercer, G. N. .
MATHEMATICAL BIOSCIENCES, 2015, 262 :157-166
[50]  
Noble Charleston., 2016, BIORXIV