Efficient Finite Element Model Order Reduction of Electromagnetic Systems using Fast Converging Jacobi-Davidson Iteration

被引:0
作者
Kumar, Neeraj [1 ]
Vinoy, K. J. [1 ]
Gopalakrishnan, S. [2 ]
机构
[1] Indian Inst Sci, Dept Elect & Commun Engn, Bangalore, Karnataka, India
[2] Indian Inst Sci, Dept Aerosp Engn, Bangalore, Karnataka, India
来源
2014 IEEE INTERNATIONAL MICROWAVE AND RF CONFERENCE (IMARC) | 2014年
关键词
Computational electromagnetics; finite element analysis; Jacobi-Davidson; model order reduction; radiation; scattering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Finite element models of electromagnetic scattering/radiation problems involve absorbing boundaries for the computational domain truncation. Model order reduction based on eigenspace projection for such systems, invariably, has to deal with nonlinear eigenvalue problems. For small systems, the eigenspaces can be extracted using linearization techniques. However, the linearized system is atleast double in size compared to the original system. Therefore, selective extraction of interior eigenvalues can take prohibitively long using traditional shift-invert techniques. In this paper, a Jacobi-Davidson based algorithm is used to extract the desired part of the spectrum. The reduced system is setup quickly and is shown to be accurate within a desired frequency band.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 12 条
[1]  
ANTOULAS A. C., 2005, ADV DES CONTROL, DOI 10.1137/1.9780898718713
[2]   SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem [J].
Bai, ZJ ;
Su, YF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) :640-659
[3]   Simultaneous time and frequency domain solutions of EM problems using finite element and CFH techniques [J].
Kolbehdari, MA ;
Srinivasan, M ;
Nakhla, MS ;
Zhang, QJ ;
Achar, R .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (09) :1526-1534
[4]  
Kumar N., 2012, P ANT PROP S 2012 CU, V13, P63
[5]  
Kumar N, 2013, IEEE MTTS INT MICRO
[6]   Structured polynomial eigenvalue problems: Good vibrations from good linearizations [J].
Mackey, D. Steven ;
Mackey, Niloufer ;
Mehl, Christian ;
Mehrmann, Volker .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (04) :1029-1051
[7]  
Riley D. J., 2009, FINITE ELEMENT ANAL
[8]   Well-conditioned asymptotic waveform evaluation for finite elements [J].
Slone, RD ;
Lee, R ;
Lee, JF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (09) :2442-2447
[9]  
Van Gijzen MB, 1999, INT J NUMER METH ENG, V45, P765, DOI 10.1002/(SICI)1097-0207(19990630)45:6<765::AID-NME607>3.0.CO
[10]  
2-A