Relaxation scheme for the nonlinear Schrodinger equation and Davey-Stewartson systems

被引:28
作者
Besse, C
机构
[1] Univ Bordeaux 1, UPRESA 5466, F-33405 Talence, France
[2] Univ Toulouse 3, UFR MIG, F-31062 Toulouse 4, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 12期
关键词
D O I
10.1016/S0764-4442(98)80405-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a new numerical scheme for the nonlinear Schrodinger equation and the Davey-Stewartson systems. This is a relaxation type;scheme that avoids the resolution of nonlinear systems. We give convergence results for the semi-discret version, locally in time for all data and globally in time for small data. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1427 / 1432
页数:6
相关论文
共 6 条
[1]  
BESSE C, 1997, 97031 MATH APPL BORD
[2]  
BESSE C, 1998, THESIS U BORDEAUX 1
[3]   The Cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics [J].
Colin, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (03) :516-529
[4]  
COLIN T, 1998, IN PRESS DISCR CONTI
[5]   FINITE-DIFFERENCE SOLUTIONS OF A NON-LINEAR SCHRODINGER-EQUATION [J].
DELFOUR, M ;
FORTIN, M ;
PAYRE, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :277-288
[6]   ON THE INITIAL-VALUE PROBLEM FOR THE DAVEY-STEWARTSON SYSTEMS [J].
GHIDAGLIA, JM ;
SAUT, JC .
NONLINEARITY, 1990, 3 (02) :475-506