Effects of Li-doped NiO on the charge-discharge properties of LiF-NiO composites used as cathode materials for Li-ion batteries

被引:5
作者
Tomita, Yasumasa [1 ]
Kimura, Noritaka [2 ]
Nasu, Hiromasa [1 ]
Izumi, Yusuke [1 ]
Arai, Juichi [3 ]
Yamane, Yohei [4 ]
Yamada, Koji [4 ]
Kohno, Yoshiumi [1 ]
Kobayashi, Kenkichiro [1 ]
机构
[1] Shizuoka Univ, Grad Sch Engn, Dept Appl Chem & Biochem Engn, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328561, Japan
[2] Shizuoka Univ, Grad Sch Sci & Technol, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328561, Japan
[3] Yamaha Motor Co Ltd, 2500 Shingai, Iwata City, Shizuoka 4388501, Japan
[4] Nihon Univ, Coll Ind Technol, 1-2-1 Izumi Cho, Narashino, Chiba 2758575, Japan
基金
日本学术振兴会;
关键词
Cathode materials; Lithium-ion secondary battery; Mechanical milling; Solid solutions; Li doping; LITHIUM; NANOCOMPOSITES; PERFORMANCE;
D O I
10.1007/s10800-017-1104-z
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiF-NiO composites are synthesized by the mechanical milling of LiF and Li-doped NiO (d_NiO) for 72 h. Li-d_NiO is prepared by the calcination of a mixture of Li2CO3 and NiO. The X-ray diffraction peaks of NiO are shifted by the doping and milling processes, while those of LiF disappear after milling. Rietveld analysis shows that the composites obtained by milling form solid solutions and that the Li+ and Ni2+ ions in them are disordered. LiF and Li-d_NiO samples milled individually do not exhibit a noticeable discharge capacity, while the composites show large values. The composite formed using undoped NiO without ball-milling shows a discharge capacity of 144 mA h g(-1) at 0.05 C between 2.0 and 5.0 V, while the composite of LiF and 20% Li-d_NiO exhibits a discharge capacity of 247 mA h g(-1). The rate capabilities of the composites increase with the Li content, and the discharge capacity of the LiF-Li-d_NiO (20%) is 146 mA h g(-1) at 1 C for voltages of 2.0-4.8 V. Discharge capacity of composite of LiF and Li(20%)-doped NiO is 247 mAh g(-1). [GRAPHICS] .
引用
收藏
页码:1057 / 1063
页数:7
相关论文
共 19 条
  • [1] Cathode performance and voltage estimation of metal trihalides
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (02) : 716 - 719
  • [2] Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C
    Badway, F
    Pereira, N
    Cosandey, F
    Amatucci, GG
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) : A1209 - A1218
  • [3] TRANSPORT-PROPERTIES OF LITHIUM AND SODIUM DOPED NICKEL-OXIDE
    DUTT, MB
    BANERJEE, R
    BARUA, AK
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1981, 65 (01): : 365 - 370
  • [4] Challenges for rechargeable batteries
    Goodenough, J. B.
    Kim, Youngsik
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6688 - 6694
  • [5] A NOTE ON THE SOLID CHEMISTY OF THE NIO-LI2O SOLID SOLUTION
    IIDA, Y
    HAYASHI, N
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1964, 37 (05) : 659 - 662
  • [6] Three-dimensional visualization in powder diffraction
    Izumi, Fujio
    Momma, Koichi
    [J]. APPLIED CRYSTALLOGRAPHY XX, 2007, 130 : 15 - 20
  • [7] Synthesis and thermoelectric performance of Li-doped NiO ceramics
    Liu, Shaohui
    Wang, Jiao
    Jia, Jianfeng
    Hu, Xing
    Liu, Shijiang
    [J]. CERAMICS INTERNATIONAL, 2012, 38 (06) : 5023 - 5026
  • [8] Fabrication of LiF/Fe/Graphene Nanocomposites As Cathode Material for Lithium-Ion Batteries
    Ma, Ruguang
    Dong, Yucheng
    Xi, Liujiang
    Yang, Shiliu
    Lu, Zhouguang
    Chung, Chiyuen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) : 892 - 897
  • [9] LIXCOO2 "(OLESS-THANXLESS-THAN-OR-EQUAL-TO1) - A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH-ENERGY DENSITY
    MIZUSHIMA, K
    JONES, PC
    WISEMAN, PJ
    GOODENOUGH, JB
    [J]. MATERIALS RESEARCH BULLETIN, 1980, 15 (06) : 783 - 789
  • [10] Cathode properties of metal trifluorides in Li and Na secondary batteries
    Nishijima, Manabu
    Gocheva, Irina D.
    Okada, Shigeto
    Doi, Takayuki
    Yamaki, Jun-ichi
    Nishida, Tetsuaki
    [J]. JOURNAL OF POWER SOURCES, 2009, 190 (02) : 558 - 562