Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed

被引:45
|
作者
Chen, Bin [1 ,2 ]
Han, Xiangxin [1 ]
Tong, Jianhui [1 ,3 ]
Mu, Mao [1 ]
Jiang, Xiumin [1 ]
Wang, Sha [2 ]
Shen, Jun [2 ]
Ye, Xiao [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Inst Thermal Energy Engn, Shanghai 200240, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[3] Jingdezhen Ceram Inst, Sch Mat Sci & Engn, Jingdezhen 333403, Peoples R China
基金
中国国家自然科学基金;
关键词
Oil shale; Biomass; Fast co-pyrolysis; synergy; HYDROTHERMAL PRETREATMENT; BIOMASS; WASTE; YIELD; TEMPERATURE; CONVERSION; FUELS; ASH;
D O I
10.1016/j.enconman.2019.112356
中图分类号
O414.1 [热力学];
学科分类号
摘要
Fast co-pyrolysis characteristics of oil shale-wood blends were researched by a bubbling fluidized bed reactor in this paper. An on-line GASMET Fourier transform infrared (FTIR) spectrometer and a gas chromatography-mass spectrometer (GC-MS) were employed for analyzing gas and liquid products. The effect of different blending ratios of oil shale(S)/wood(W) (S:W = 1:0,3:1,1:1,1:3,0:1 in this paper) on the co-pyrolysis products was discussed. The effect of temperature on the characteristics of the co-pyrolysis of S:W = 3:1 was also investigated in this paper. According to the results, the interaction of oil shale and biomass influenced oxygen distribution in volatiles, promoting the generation of CO2 generation and inhibiting the conversion of oxygen-containing compounds like alcohols and acids in pyrolytic oil. The effects of minerals in oil shale and the free radicals generated from wood were concluded according to the experimental results. In addition, as the temperature increased from 430 degrees C-600 degrees C, the yield of oil reached maximum at 520 degrees C with stronger secondary cracking of kerogen and biomass macromolecules.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Co-pyrolysis of Lignite-Oil Shale Mixtures
    Hayta, Ugur
    Bozkurt, Pinar Acar
    Canel, Muammer
    3RD INTERNATIONAL CONGRESS ON ENERGY EFFICIENCY AND ENERGY RELATED MATERIALS (ENEFM2015), 2017,
  • [42] Study on the co-pyrolysis of oil shale and corn stalk: Pyrolysis characteristics, kinetic and gaseous product analysis
    Zhai, Yingmei
    Zhu, Yiming
    Cui, Shuang
    Tao, Yiming
    Kai, Xingping
    Yang, Tianhua
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 163
  • [43] Co-pyrolysis of neem wood bark and low-density polyethylene: influence of plastic on pyrolysis product distribution and bio-oil characterization
    Kaushik, Venkatachalam Selvaraj
    Dhanalakshmi, Chandrasekaran Sowmya
    Madhu, Petchimuthu
    Tamilselvam, Palanisamy
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (58) : 88213 - 88223
  • [44] Fast pyrolysis of Amazon tucuma (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor
    Lira, Claudio S.
    Berruti, Federico M.
    Palmisano, Pietro
    Berruti, Franco
    Briens, Cedric
    Pecora, Arai A. B.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 99 : 23 - 31
  • [45] Influence of Moisture Contents on the Fast Pyrolysis of Trommel Fines in a Bubbling Fluidized Bed Reactor
    Eke, Joseph
    Onwudili, Jude A.
    Bridgwater, Anthony, V
    WASTE AND BIOMASS VALORIZATION, 2020, 11 (07) : 3711 - 3722
  • [46] FAST PYROLYSIS AND CO-PYROLYSIS OF GOYNUK OIL SHALE (TURKEY) AND POLYPROPYLENE IN FREE FALLING REACTOR (FFR)
    Erdogan, Cem
    Ballice, Levent
    Saglam, Mehmet
    Yuksel, Mithat
    OIL SHALE, 2014, 31 (01) : 30 - 41
  • [47] Investigation into co-pyrolysis characteristics of oil shale and coal
    Miao Zhenyong
    Wu Guoguang
    Ping, Li
    Meng Xianliang
    Zheng Zhilei
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2012, 22 (02) : 245 - 249
  • [48] The characteristics and kinetics of co-pyrolysis of furfural residue with oil shale semi-coke
    Yang, Yu
    Chen, Ye
    Deng, Yuchuan
    Ji, Xuanyu
    OIL SHALE, 2021, 38 (01) : 26 - 41
  • [49] Studies of the Bubbling Fluidized Bed Retorting of Dachengzi Oil Shale: 1. Effect of Retorting Temperature
    Han, Xiangxin
    Huang, Yiru
    Wang, Xiaoye
    Wang, Yanwen
    Jiang, Xiumin
    ENERGY & FUELS, 2021, 35 (03) : 2838 - 2844
  • [50] A TG-FTIR investigation to the co-pyrolysis of oil shale with coal
    Li, Shuangshuang
    Ma, Xiaoqian
    Liu, Guicai
    Guo, Mingxuan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 120 : 540 - 548