Galois Representations and Galois Groups Over Q

被引:2
作者
Arias-de-Reyna, Sara
Armana, Cecile [1 ]
Karemaker, Valentijn [2 ]
Rebolledo, Marusia [3 ]
Thomas, Lara [4 ]
Vila, Nuria [5 ]
机构
[1] Univ Franche Comtee, Math Lab, Besancon, France
[2] Univ Utrecht, Math Inst, Utrecht, Netherlands
[3] Univ Blaise Pascal, Math Lab, Aubiere, France
[4] ENS, Pure & Appl Math Unit, Lyon, France
[5] Univ Barcelona, Dept Algebra & Geometry, Barcelona, Spain
来源
WOMEN IN NUMBERS EUROPE: RESEARCH DIRECTIONS IN NUMBER THEORY | 2015年 / 2卷
关键词
GEOMETRIC FAMILIES; MODULAR-FORMS; IMAGES; GENUS-2; POINTS; CURVES; ORDER;
D O I
10.1007/978-3-319-17987-2_8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve, let J(C) be the associated Jacobian variety, and let (rho) over bar (l) : G(Q) -> GSp(J(C)[l]) be the Galois representation attached to the l-torsion of J(C). Assume that there exists a prime p such that J(C) has semistable reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that (rho) over bar (l) is surjective. In particular we realize GSp(6)(F-l) as a Galois group over Q for all primes l is an element of [11, 500,000].
引用
收藏
页码:191 / 205
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 2013, PREPRINT
[2]  
[Anonymous], CONT MATH
[3]  
Arias-de-Reyna S., 2014, DEMONSTRATIO MATH
[4]   Compatible systems of symplectic Galois representations and the inverse Galois problem III. Automorphic construction of compatible systems with suitable local properties [J].
Arias-de-Reyna, Sara ;
Dieulefait, Luis V. ;
Shin, Sug Woo ;
Wiese, Gabor .
MATHEMATISCHE ANNALEN, 2015, 361 (3-4) :909-925
[5]   Tame Galois Realizations of GSp4(Fl) over Q [J].
Arias-de-Reyna, Sara ;
Vila, Nuria .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (09) :2028-2046
[6]  
Arias-De-Reyna S, 2013, MATH RES LETT, V20, P1
[7]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[8]  
Dettweiler M, 2001, MATH RES LETT, V8, P577
[9]   On the images of modular and geometric three-dimensional Galois representations [J].
Dieulefait, L ;
Vila, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (02) :335-361
[10]   Projective linear groups as Galois groups over Q via modular representations [J].
Dieulefait, L ;
Vila, N .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :799-810