Galois Representations and Galois Groups Over Q

被引:2
|
作者
Arias-de-Reyna, Sara
Armana, Cecile [1 ]
Karemaker, Valentijn [2 ]
Rebolledo, Marusia [3 ]
Thomas, Lara [4 ]
Vila, Nuria [5 ]
机构
[1] Univ Franche Comtee, Math Lab, Besancon, France
[2] Univ Utrecht, Math Inst, Utrecht, Netherlands
[3] Univ Blaise Pascal, Math Lab, Aubiere, France
[4] ENS, Pure & Appl Math Unit, Lyon, France
[5] Univ Barcelona, Dept Algebra & Geometry, Barcelona, Spain
关键词
GEOMETRIC FAMILIES; MODULAR-FORMS; IMAGES; GENUS-2; POINTS; CURVES; ORDER;
D O I
10.1007/978-3-319-17987-2_8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve, let J(C) be the associated Jacobian variety, and let (rho) over bar (l) : G(Q) -> GSp(J(C)[l]) be the Galois representation attached to the l-torsion of J(C). Assume that there exists a prime p such that J(C) has semistable reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that (rho) over bar (l) is surjective. In particular we realize GSp(6)(F-l) as a Galois group over Q for all primes l is an element of [11, 500,000].
引用
收藏
页码:191 / 205
页数:15
相关论文
共 50 条