Hierarchical Pruning Discriminative Extreme Learning Machine

被引:1
作者
Guo, Tan [1 ]
Tan, Xiaoheng [1 ]
Zhang, Lei [1 ]
机构
[1] Chongqing Univ, Coll Commun Engn, Chongqing, Peoples R China
来源
PROCEEDINGS OF ELM-2017 | 2019年 / 10卷
关键词
Extreme learning machine (ELM); Hierarchical learning; Auto-encoder; Neuron pruning; Label relaxation;
D O I
10.1007/978-3-030-01520-6_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extreme learning machine (ELM) provides efficient unified solutions for generalized single hidden layer feed-forward neural networks. Hierarchical learning based on ELM has now attracted lots of interests. This paper presents a hierarchical pruning discriminative ELM (H-PDELM) for feature learning and classification. The ELM pruning auto-encoder (ELM-PAE) is developed for unsupervised feature learning by promoting the output weights matrix to be row-sparse based on l(2), (1)-norm regularization. ELM-PAE can naturally distinguish and prune useless neurons in hidden layer to determine the structure of AE. Besides, we learn a flexible output weights matrix for super-vised feature classification by relaxing the strict regression label matrix of ELM into a slack one for better generalization performance. H-PDELM performs layer-wise unsupervised feature learning using ELM-PAE, and conducts decision making by the flexible output weights matrix. The network of H-PDELM is compact with good generalization ability. Preliminary experiments on visual dataset show its effectiveness.
引用
收藏
页码:230 / 239
页数:10
相关论文
共 13 条
[1]   Neuron Pruning-Based Discriminative Extreme Learning Machine for Pattern Classification [J].
Guo, Tan ;
Zhang, Lei ;
Tan, Xiaoheng .
COGNITIVE COMPUTATION, 2017, 9 (04) :581-595
[2]   Trends in extreme learning machines: A review [J].
Huang, Gao ;
Huang, Guang-Bin ;
Song, Shiji ;
You, Keyou .
NEURAL NETWORKS, 2015, 61 :32-48
[3]   Semi-Supervised and Unsupervised Extreme Learning Machines [J].
Huang, Gao ;
Song, Shiji ;
Gupta, Jatinder N. D. ;
Wu, Cheng .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (12) :2405-2417
[4]   Convex incremental extreme learning machine [J].
Huang, Guang-Bin ;
Chen, Lei .
NEUROCOMPUTING, 2007, 70 (16-18) :3056-3062
[5]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[6]   Universal approximation using incremental constructive feedforward networks with random hidden nodes [J].
Huang, Guang-Bin ;
Chen, Lei ;
Siew, Chee-Kheong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :879-892
[7]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[8]   Dimension Reduction With Extreme Learning Machine [J].
Kasun, Liyanaarachchi Lekamalage Chamara ;
Yang, Yan ;
Huang, Guang-Bin ;
Zhang, Zhengyou .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) :3906-3918
[9]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[10]   Extreme Learning Machine for Multilayer Perceptron [J].
Tang, Jiexiong ;
Deng, Chenwei ;
Huang, Guang-Bin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (04) :809-821