Global well-posedness of the Cauchy problem for certain magnetohydrodynamic-α models

被引:3
作者
Du, Yi [2 ]
Qiu, Hua [1 ]
Zhengan-Yao
机构
[1] S China Agr Univ, Sch Math & Computat Sci, Sun Yat Sen Univ, Guangzhou, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
magnetohydrodynamic; Littlewood-Paley decomposition; global well-posedness; NAVIER-STOKES SYSTEM; CAMASSA-HOLM EQUATIONS; TRAJECTORY ATTRACTOR; WEAK SOLUTIONS; TURBULENCE; REGULARITY;
D O I
10.1002/mma.1265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the Cauchy problem for certain incompressible magnetohydrodynamics-alpha model. In the Sobolev space with fractional index s>1, we proved the local solutions for any initial data, and global solutions for small initial data. Furthermore, we also prove that as alpha -> 0, the MHD-alpha model reduces to the MHD equations, and the solutions of the MHD-alpha model converge to a pair of solutions for the MHD equations. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:1545 / 1557
页数:13
相关论文
共 28 条
[1]   Global Classical Solutions for MHD System [J].
Casella, Emanuela ;
Secchi, Paolo ;
Trebeschi, Paola .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (01) :70-91
[2]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[3]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[4]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[5]  
CHEN QL, 2007, ARXIVMATH0611165V4MA
[6]   The Camassa-Holm equations and turbulence [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICA D, 1999, 133 (1-4) :49-65
[7]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[8]  
Chepyzhov VV, 2007, DISCRETE CONT DYN-A, V17, P481
[9]   An Eulerian-Lagrangian approach to the Navier-Stokes equations [J].
Constantin, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (03) :663-686
[10]   Vanishing shear viscosity limit in the magnetohydrodynamic equations [J].
Fan, Jishan ;
Jiang, Song ;
Nakamura, Gen .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :691-708