Three-Dimensional Lotka-Volterra Systems with 3:-1:2-Resonance

被引:3
作者
Aziz, Waleed [1 ,2 ]
Christopher, Colin [3 ]
Llibre, Jaume [4 ]
Pantazi, Chara [5 ]
机构
[1] Salahaddin Univ Erbil, Coll Sci, Dept Math, Erbil, Kurdistan Regio, Iraq
[2] Tishk Int Univ, Fac Sci, Informat Technol Dept, Erbil Krg, Iraq
[3] Plymouth Univ, Sch Engn Comp & Math, Plymouth PL4 8AA, Devon, England
[4] Univ Autonoma Barcelona, Dept Matemat, Edifici C, Barcelona 08193, Spain
[5] Univ Politecn Catalunya EPSEB, Dept Matemat, Av Doctor Maranon 44-50, Barcelona 08028, Spain
基金
欧盟地平线“2020”;
关键词
Lotka-Volterra; integrability; linearizability; Jacobi multiplier; INTEGRABILITY; LINEARIZABILITY; INTEGRALS;
D O I
10.1007/s00009-021-01809-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local integrability at the origin of a nine-parameter family of three-dimensional Lotka-Volterra differential systems with (3:- 1:2)-resonance. We give necessary and sufficient conditions on the parameters of the family that guarantee the existence of two independent local first integrals at the origin of coordinates. Additionally, we classify those cases where the origin is linearizable.
引用
收藏
页数:24
相关论文
共 50 条
[21]   Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters [J].
Bischi, G. I. ;
Tramontana, F. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :3000-3014
[22]   The integrability of a class of cubic Lotka-Volterra systems [J].
Liu, Changjian ;
Li, Yun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 :67-74
[23]   MEASURE PRESERVATION AND INTEGRALS FOR LOTKA-VOLTERRA TREE-SYSTEMS AND THEIR KAHAN DISCRETISATION [J].
van der Kamp, Peter H. ;
McLachlan, Robert I. ;
McLaren, David I. ;
Quispel, G. R. W. .
JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, 11 (04) :468-484
[24]   Whence Lotka-Volterra?: Conservation laws and integrable systems in ecology [J].
O'Dwyer, James P. .
THEORETICAL ECOLOGY, 2018, 11 (04) :441-452
[25]   Whence Lotka-Volterra?Conservation laws and integrable systems in ecology [J].
James P. O’Dwyer .
Theoretical Ecology, 2018, 11 :441-452
[26]   Integrable deformations of Lotka-Volterra systems [J].
Ballesteros, Angel ;
Blasco, Alfonso ;
Musso, Fabio .
PHYSICS LETTERS A, 2011, 375 (38) :3370-3374
[27]   Global dynamics of a family of 3-D Lotka-Volterra systems [J].
Murza, A. C. ;
Teruel, A. E. .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02) :269-284
[28]   Evolutionary stability in Lotka-Volterra systems [J].
Cressman, R ;
Garay, J .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 222 (02) :233-245
[29]   Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities [J].
Brigita Ferčec ;
Jaume Giné ;
Yirong Liu ;
Valery G. Romanovski .
Acta Applicandae Mathematicae, 2013, 124 :107-122
[30]   Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities [J].
Fercec, Brigita ;
Gine, Jaume ;
Liu, Yirong ;
Romanovski, Valery G. .
ACTA APPLICANDAE MATHEMATICAE, 2013, 124 (01) :107-122