A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons

被引:191
作者
Abbott, Jeffrey [1 ,2 ,3 ]
Ye, Tianyang [1 ]
Krenek, Keith [1 ]
Gertner, Rona S. [2 ]
Ban, Steven [2 ]
Kim, Youbin [3 ]
Qin, Ling [1 ]
Wu, Wenxuan [1 ]
Park, Hongkun [2 ,3 ]
Ham, Donhee [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ALL-OPTICAL ELECTROPHYSIOLOGY; IN-CELL RECORDINGS; MAMMALIAN NEURONS; ACTION-POTENTIALS; LONG-TERM; DYNAMICS; VOLTAGE;
D O I
10.1038/s41551-019-0455-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current electrophysiological or optical techniques cannot reliably perform simultaneous intracellular recordings from more than a few tens of neurons. Here we report a nanoelectrode array that can simultaneously obtain intracellular recordings from thousands of connected mammalian neurons in vitro. The array consists of 4,096 platinum-black electrodes with nanoscale roughness fabricated on top of a silicon chip that monolithically integrates 4,096 microscale amplifiers, configurable into pseudocurrent-clamp mode (for concurrent current injection and voltage recording) or into pseudovoltage-clamp mode (for concurrent voltage application and current recording). We used the array in pseudovoltage-clamp mode to measure the effects of drugs on ion-channel currents. In pseudocurrent-clamp mode, the array intracellularly recorded action potentials and postsynaptic potentials from thousands of neurons. In addition, we mapped over 300 excitatory and inhibitory synaptic connections from more than 1,700 neurons that were intracellularly recorded for 19min. This high-throughput intracellular-recording technology could benefit functional connectome mapping, electrophysiological screening and other functional interrogations of neuronal networks.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 47 条
  • [1] Abbott J, 2017, NAT NANOTECHNOL, V12, P460, DOI [10.1038/nnano.2017.3, 10.1038/NNANO.2017.3]
  • [2] Brain-wide neuronal dynamics during motor adaptation in zebrafish
    Ahrens, Misha B.
    Li, Jennifer M.
    Orger, Michael B.
    Robson, Drew N.
    Schier, Alexander F.
    Engert, Florian
    Portugues, Ruben
    [J]. NATURE, 2012, 485 (7399) : 471 - U80
  • [3] Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging
    Akerboom, Jasper
    Chen, Tsai-Wen
    Wardill, Trevor J.
    Tian, Lin
    Marvin, Jonathan S.
    Mutlu, Sevinc
    Calderon, Nicole Carreras
    Esposti, Federico
    Borghuis, Bart G.
    Sun, Xiaonan Richard
    Gordus, Andrew
    Orger, Michael B.
    Portugues, Ruben
    Engert, Florian
    Macklin, John J.
    Filosa, Alessandro
    Aggarwal, Aman
    Kerr, Rex A.
    Takagi, Ryousuke
    Kracun, Sebastian
    Shigetomi, Eiji
    Khakh, Baljit S.
    Baier, Herwig
    Lagnado, Leon
    Wang, Samuel S. -H.
    Bargmann, Cornelia I.
    Kimmel, Bruce E.
    Jayaraman, Vivek
    Svoboda, Karel
    Kim, Douglas S.
    Schreiter, Eric R.
    Looger, Loren L.
    [J]. JOURNAL OF NEUROSCIENCE, 2012, 32 (40) : 13819 - 13840
  • [4] Characterization of neocortical principal cells and Interneurons by network interactions and extracellular features
    Barthó, P
    Hirase, H
    Monconduit, L
    Zugaro, M
    Harris, KD
    Buzsáki, G
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (01) : 600 - 608
  • [5] Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks
    Berdondini, Luca
    Imfeld, Kilian
    Maccione, Alessandro
    Tedesco, Mariateresa
    Neukom, Simon
    Koudelka-Hep, Milena
    Martinoia, Sergio
    [J]. LAB ON A CHIP, 2009, 9 (18) : 2644 - 2651
  • [6] Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes
    Dipalo, Michele
    Amin, Hayder
    Lovato, Laura
    Moia, Fabio
    Caprettini, Valeria
    Messina, Gabriele C.
    Tantussi, Francesco
    Berdondini, Luca
    De Angelis, Francesco
    [J]. NANO LETTERS, 2017, 17 (06) : 3932 - 3939
  • [7] Duan XJ, 2012, NAT NANOTECHNOL, V7, P174, DOI [10.1038/NNANO.2011.223, 10.1038/nnano.2011.223]
  • [8] High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology
    Dunlop, John
    Bowlby, Mark
    Peri, Ravikumar
    Vasilyev, Dmytro
    Arias, Robert
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (04) : 358 - 368
  • [9] A 128x128 CMOS biosensor array for extracellular recording of neural activity
    Eversmann, B
    Jenkner, M
    Hofmann, F
    Paulus, C
    Brederlow, R
    Holzapfl, B
    Fromherz, P
    Merz, M
    Brenner, M
    Schreiter, M
    Gabl, R
    Plehnert, K
    Steinhauser, M
    Eckstein, G
    Schmitt-Landsiedel, D
    Thewes, R
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (12) : 2306 - 2317
  • [10] Whole cell patch clamp recording performed on a planar glass chip
    Fertig, N
    Blick, RH
    Behrends, JC
    [J]. BIOPHYSICAL JOURNAL, 2002, 82 (06) : 3056 - 3062