THE GROMOV BOUNDARY OF THE RAY GRAPH

被引:16
作者
Bavard, Juliette [1 ,2 ]
Walker, Alden [3 ]
机构
[1] UPMC, Inst Math Jussieu Paris Rive Gauche, Paris, France
[2] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[3] Ctr Commun Res, La Jolla, CA 92121 USA
关键词
HOMEOMORPHISMS; HYPERBOLICITY;
D O I
10.1090/tran/7204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ray graph is a Gromov-hyperbolic graph on which the mapping class group of the plane minus a Cantor set acts by isometries. We give a description of the Gromov boundary of the ray graph in terms of cliques of long rays on the plane minus a Cantor set. As a consequence, we prove that the Gromov boundary of the ray graph is homeomorphic to a quotient of a subset of the circle.
引用
收藏
页码:7647 / 7678
页数:32
相关论文
共 12 条
[1]   Hyperbolicity ray graph and quasi-morphisms on a large modular group [J].
Bavard, Juliette .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :491-535
[2]   Construction of curious minimal uniquely ergodic homeomorphisms on manifolds:: the Denjoy-Rees technique [J].
Beguin, Francois ;
Crovisier, Sylvain ;
Le Roux, Frederic .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (02) :251-308
[3]   Embeddings of Gromov hyperbolic spaces [J].
Bonk, M ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) :266-306
[4]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
[5]  
Calegari D., Big mapping class groups and dynamic
[6]  
Funar L, 2012, IRMA LECT MATH THEOR, V17, P595
[7]   1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs [J].
Hensel, Sebastian ;
Przytycki, Piotr ;
Webb, Richard C. H. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (04) :755-762
[8]  
Ilya K., 2002, Contemp. Math., V296, P39
[9]  
Klarreich E., PREPRINT
[10]   Topological study of the space of Brouwer homeomorphisms, part I [J].
Le Roux, F .
TOPOLOGY, 2001, 40 (05) :1051-1087