Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances

被引:32
作者
Madras, Neal [1 ]
Sezer, Deniz [2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
convergence rate; coupling; Gibbs sampler; iterated random functions; local contractivity; logistic map; Markov chain; random dynamical system; total variation distance; Wasserstein distance; MONTE-CARLO; IMAGE-RESTORATION;
D O I
10.3150/09-BEJ238
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a framework for obtaining explicit bounds on the rate of convergence to equilibrium of a Markov chain on a general state space, with respect to both total variation and Wasserstein distances. For Wasserstein bounds, our main tool is Steinsaltz's convergence theorem for locally contractive random dynamical systems. We describe practical methods for finding Steinsaltz's "drift functions" that prove local contractivity. We then use the idea of "one-shot coupling" to derive criteria that give bounds for total variation distances in terms of Wasserstein distances. Our methods are applied to two examples: a two-component Gibbs sampler for the Normal distribution and a random logistic dynamical system.
引用
收藏
页码:882 / 908
页数:27
相关论文
共 50 条
  • [31] CONVERGENCE RATE OF MARKOV CHAIN METHODS FOR GENOMIC MOTIF DISCOVERY
    Woodard, Dawn B.
    Rosenthal, Jeffrey S.
    ANNALS OF STATISTICS, 2013, 41 (01) : 91 - 124
  • [32] Approximation of Discounted Minimax Markov Control Problems and Zero-Sum Markov Games Using Hausdorff and Wasserstein Distances
    François Dufour
    Tomás Prieto-Rumeau
    Dynamic Games and Applications, 2019, 9 : 68 - 102
  • [33] Convergence Diagnostics for Markov Chain Monte Carlo
    Roy, Vivekananda
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 387 - 412
  • [34] Total variation bounds for Gaussian functionals
    Pratelli, Luca
    Rigo, Pietro
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2231 - 2248
  • [35] QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
    Andrieu, Christophe
    Fort, Gersende
    Vihola, Matti
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 391 - 404
  • [36] Wasserstein and total variation distance between marginals of Levy processes
    Mariucci, Ester
    Reiss, Markus
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2482 - 2514
  • [37] Convergence in Total Variation of Random Sums
    Pratelli, Luca
    Rigo, Pietro
    MATHEMATICS, 2021, 9 (02) : 1 - 11
  • [38] Convergence Analysis of Cuckoo Search by Creating Markov Chain
    周晖
    程亚乔
    李丹美
    徐晨
    JournalofDonghuaUniversity(EnglishEdition), 2016, 33 (06) : 973 - 977
  • [39] ON THE LIMITATIONS OF SINGLE-STEP DRIFT AND MINORIZATION IN MARKOV CHAIN CONVERGENCE ANALYSIS
    Qin, Qian
    Hobert, James P.
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (04) : 1633 - 1659
  • [40] Convergence of the Markov Chain Distributed Particle Filter (MCDPF)
    Lee, Sun Hwan
    West, Matthew
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (04) : 801 - 812