Spatial modes for the neutron diffusion equation and their computation

被引:14
作者
Carreno, A. [1 ]
Vidal-Ferrandiz, A. [1 ]
Ginestar, D. [2 ]
Verdu, G. [1 ]
机构
[1] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental, Camino Vera S-N, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, E-46022 Valencia, Spain
关键词
Spatial modes; Finite element; Neutron diffusion equation; Block Newton method; Generalized eigenvalue problem; NUCLEAR-POWER REACTOR; DOMINANT TIME-EIGENVALUES; LAMBDA-MODES; ALPHA-MODES; TRANSPORT EQUATION; INSTABILITIES; SYSTEMS;
D O I
10.1016/j.anucene.2017.08.018
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Different spatial modes can be defined for the neutron diffusion equation such as the lambda, alpha and gamma-modes. These modes have been successfully used for the analysis of nuclear reactor characteristics. In this work, these modes are studied using a high order finite element method to discretize the equations and also different methods to solve the resulting algebraic eigenproblems, are compared. Particularly, Krylov subspace methods and block-Newton methods have been studied. The performance of these methods has been tested in several 3D benchmark problems: a homogeneous reactor and several configurations of NEACRP reactor. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:1010 / 1022
页数:13
相关论文
共 38 条
[1]   Biorthogonalization, geometric invariant properties and rate-based estimate of Lyapunov spectra [J].
Adrover, A ;
Creta, F ;
Giona, M ;
Valorani, M .
PHYSICS LETTERS A, 2005, 342 (5-6) :421-429
[2]  
[Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
[3]  
[Anonymous], 1970, NUCL REACTOR THEORY
[4]  
[Anonymous], 1979, THESIS MIT
[5]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[6]   Spectral properties of dynamic processes in a nuclear reactor [J].
Avvakumov, Alexander V. ;
Strizhov, Valery F. ;
Vabishchevich, Petr N. ;
Vasilev, Alexander O. .
ANNALS OF NUCLEAR ENERGY, 2017, 99 :68-79
[7]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[8]  
Carreno A., 2017, APPL MATH NONLINEAR, V2, P225
[9]  
Finnemann H., 1991, NEACRPL335
[10]  
Finnemann H., 1975, Technical Report