Gramine promotes functional recovery after spinal cord injury via ameliorating microglia activation

被引:7
|
作者
Lu, Xiaolang [1 ,2 ,3 ,4 ]
Lu, Fengfeng [1 ,2 ,3 ,4 ]
Yu, Jiachen [1 ,2 ,3 ,4 ]
Xue, Xinghe [1 ,2 ,3 ,4 ]
Jiang, Hongyi [1 ,2 ,3 ,4 ]
Jiang, Liting [1 ,2 ,3 ,4 ]
Yang, Yang [1 ,2 ,3 ,4 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 2, Dept Orthoped, Wenzhou, Peoples R China
[2] Wenzhou Med Univ, Yuying Childrens Hosp, Wenzhou, Peoples R China
[3] Wenzhou Med Univ, Sch Med 2, Wenzhou, Peoples R China
[4] Zhejiang Prov Key Lab Orthoped, Wenzhou, Peoples R China
关键词
Anti-inflammation; Gramine; Microglia; NF-kappa B pathway; Spinal cord injury; NF-KAPPA-B; MOTOR FUNCTION; INFLAMMATION; INHIBITION; EXPRESSION; APOPTOSIS; PROLIFERATION; AUTOPHAGY; PATHWAY;
D O I
10.1111/jcmm.16728
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In recent years, a large number of studies have reported that neuroinflammation aggravates the occurrence of secondary injury after spinal cord injury. Gramine (GM), a natural indole alkaloid, possesses various pharmacological properties; however, the anti-inflammation property remains unclear. In our study, Gramine was investigated in vitro and in vivo to explore the neuroprotection effects. In vitro experiment, our results suggest that Gramine treatment can inhibit release of pro-inflammatory mediators. Moreover, Gramine prevented apoptosis of PC12 cells which was caused by activated HAPI microglia, and the inflammatory secretion ability of microglia was inhibited by Gramine through NF-kappa B pathway. The in vivo experiment is that 80 mg/kg Gramine was injected orthotopically to rats after spinal cord injury (SCI). Behavioural and histological analyses demonstrated that Gramine treatment may alleviate microglia activation and then boost recovery of motor function after SCI. Overall, our research has demonstrated that Gramine exerts suppressed microglia activation and promotes motor functional recovery after SCI through NF-kappa B pathway, which may put forward the prospect of clinical treatment of inflammation-related central nervous diseases.
引用
收藏
页码:7980 / 7992
页数:13
相关论文
共 50 条
  • [41] Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats
    Hao, Hai-Hu
    Wang, Li
    Guo, Zhi-Jian
    Bai, Lang
    Zhang, Rui-Ping
    Shuang, Wei-Bing
    Jia, Yi-Jia
    Wang, Jie
    Li, Xiao-Yu
    Liu, Qiang
    NEUROSCIENCE BULLETIN, 2013, 29 (04) : 484 - 492
  • [42] Asiaticoside Inhibits Neuronal Apoptosis and Promotes Functional Recovery After Spinal Cord Injury in Rats
    Lei Fan
    Xiaobin Li
    Tao Liu
    Journal of Molecular Neuroscience, 2020, 70 : 1988 - 1996
  • [43] Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats
    Hai-Hu Hao
    Li Wang
    Zhi-Jian Guo
    Lang Bai
    Rui-Ping Zhang
    Wei-Bing Shuang
    Yi-Jia Jia
    Jie Wang
    Xiao-Yu Li
    Qiang Liu
    Neuroscience Bulletin, 2013, 29 (04) : 484 - 492
  • [44] Polysialic Acid Glycomimetic Promotes Functional Recovery and Plasticity After Spinal Cord Injury in Mice
    Mehanna, Ali
    Jakovcevski, Igor
    Acar, Ayse
    Xiao, Meifang
    Loers, Gabriele
    Rougon, Genevieve
    Irintchev, Andrey
    Schachner, Melitta
    MOLECULAR THERAPY, 2010, 18 (01) : 34 - 43
  • [45] BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats
    Chen, An
    Wang, Hui
    Zhang, Jianwei
    Wu, Xiaoqiong
    Liao, Jun
    Li, Hua
    Cai, Weijun
    Luo, Xuegang
    Ju, Gong
    JOURNAL OF ETHNOPHARMACOLOGY, 2008, 117 (03) : 451 - 456
  • [46] Neuroserpin restores autophagy and promotes functional recovery after acute spinal cord injury in rats
    Li, Zheng
    Liu, Fubing
    Zhang, Liang
    Cao, Yuanwu
    Shao, Yunchao
    Wang, Xiaofeng
    Jiang, Xiaoxing
    Chen, Zixian
    MOLECULAR MEDICINE REPORTS, 2018, 17 (02) : 2957 - 2963
  • [47] BUMETANIDE PROMOTES FUNCTIONAL RECOVERY OF HINDLIMB FUNCTION AND REDUCES HEMORRHAGE AFTER SPINAL CORD INJURY
    Johnston, Travis
    Baine, R.
    Hudson, K.
    Lout, E.
    Grau, J. W.
    JOURNAL OF NEUROTRAUMA, 2019, 36 (13) : A57 - A58
  • [48] Fenretinide Promotes Functional Recovery and Tissue Protection after Spinal Cord Contusion Injury in Mice
    Lopez-Vales, Ruben
    Redensek, Adriana
    Skinner, Thomas A. A.
    Rathore, Khizr I.
    Ghasemlou, Nader
    Wojewodka, Gabriella
    DeSanctis, Juan
    Radzioch, Danuta
    David, Samuel
    JOURNAL OF NEUROSCIENCE, 2010, 30 (09): : 3220 - 3226
  • [49] Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury
    Kitamura, Kazuya
    Iwanami, Akio
    Nakamura, Masaya
    Yamane, Junichi
    Watanabe, Kota
    Suzuki, Yoshinori
    Miyazawa, Daisuke
    Shibata, Shinsuke
    Funakoshi, Hiroshi
    Miyatake, Shinichi
    Coffin, Robert S.
    Nakamura, Toshikazu
    Toyama, Yoshiaki
    Kano, Hideyuki
    JOURNAL OF NEUROSCIENCE RESEARCH, 2007, 85 (11) : 2332 - 2342
  • [50] FTY720 Reduces Inflammation and Promotes Functional Recovery after Spinal Cord Injury
    Lee, Kangmin D.
    Chow, Woon N.
    Sato-Bigbee, Carmen
    Graf, Martin R.
    Graham, Robert S.
    Colello, Raymond J.
    Young, Harold F.
    Mathern, Bruce E.
    JOURNAL OF NEUROTRAUMA, 2009, 26 (12) : 2335 - 2344