ON THE LENGTH OF CRITICAL ORBITS OF STABLE QUADRATIC POLYNOMIALS

被引:17
作者
Ostafe, Alina [1 ]
Shparlinski, Igor E. [2 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会; 瑞士国家科学基金会;
关键词
D O I
10.1090/S0002-9939-10-10404-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the Weil bound of multiplicative character sums, together with some recent results of N. Boston and R. Jones, to show that the critical orbit of quadratic polynomials over a finite field of q elements is of length O(q(3/4)), improving upon the trivial bound q.
引用
收藏
页码:2653 / 2656
页数:4
相关论文
共 9 条
[1]   Stability of polynomials [J].
Ali, N .
ACTA ARITHMETICA, 2005, 119 (01) :53-63
[2]   Irreducibility of the iterates of a quadratic polynomial over a field [J].
Ayad, M ;
McQuillan, DL .
ACTA ARITHMETICA, 2000, 93 (01) :87-97
[3]  
Crandall R., 2005, Prime Numbers: A Computational Perspective, Vsecond
[4]  
FLAJOLET P, 1990, LECT NOTES COMPUT SC, V434, P329
[5]  
GOMEZ D, 2010, ESTIMATE NUMBER STAB
[6]  
Iwaniec H., 2004, ANAL NUMBER THEORY
[7]  
JONES R, 2009, SETTLED POLYNOMIALS
[8]   The density of prime divisors in the arithmetic dynamics of quadratic polynomials [J].
Jones, Rafe .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :523-544
[9]   Iterated Galois towers, their associated martingales, and the p-adic Mandelbrot set [J].
Jones, Rafe .
COMPOSITIO MATHEMATICA, 2007, 143 (05) :1108-1126