Spinon decay in the spin-1/2 Heisenberg chain with weak next nearest neighbour exchange

被引:8
作者
Groha, Stefan [1 ]
Essler, Fabian H. L. [1 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
基金
英国工程与自然科学研究理事会;
关键词
Bethe Ansatz; spinon; integrability breaking;
D O I
10.1088/1751-8121/aa7d41
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrable models support elementary excitations with infinite lifetimes. In the spin-1/2 Heisenberg chain these are known as spinons. We consider the stability of spinons when a weak integrability breaking perturbation is added to the Heisenberg chain in a magnetic field. We focus on the case where the perturbation is a next nearest neighbour exchange interaction. We calculate the spinon decay rate in leading order in perturbation theory using methods of integrability and identify the dominant decay channels. The decay rate is found to be small, which indicates that spinons remain well-defined excitations even though integrability is broken.
引用
收藏
页数:27
相关论文
共 33 条
  • [1] [Anonymous], 2014, BETHE WAVEFUNCTION
  • [2] Metal theory
    Bethe, H.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4): : 205 - 226
  • [3] Caux J S, 2016, J MATH PHYS, V50
  • [4] Computation of dynamical correlation functions of Heisenberg chains: the gapless anisotropic regime
    Caux, JS
    Hagemans, R
    Maillet, JM
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 83 - 102
  • [5] Non-integrable aspects of the multi-frequency sine-Gordon model
    Delfino, G
    Mussardo, G
    [J]. NUCLEAR PHYSICS B, 1998, 516 (03) : 675 - 703
  • [6] Decay of particles above threshold in the Ising field theory with magnetic field
    Delfino, G
    Grinza, P
    Mussardo, G
    [J]. NUCLEAR PHYSICS B, 2006, 737 (03) : 291 - 303
  • [7] Non-integrable quantum field theories as perturbations of certain integrable models
    Delfino, G
    Mussardo, G
    Simonetti, P
    [J]. NUCLEAR PHYSICS B, 1996, 473 (03) : 469 - 508
  • [8] Spin-charge-separated quasiparticles in one-dimensional quantum fluids
    Essler, F. H. L.
    Pereira, R. G.
    Schneider, I.
    [J]. PHYSICAL REVIEW B, 2015, 91 (24)
  • [9] Essler F. H. L., 2005, The One-Dimensional Hubbard Model
  • [10] WHAT IS THE SPIN OF A SPIN-WAVE
    FADDEEV, LD
    TAKHTAJAN, LA
    [J]. PHYSICS LETTERS A, 1981, 85 (6-7) : 375 - 377