Synchronization of intermittent behavior in ensembles of multistable dynamical systems

被引:25
作者
Sevilla-Escoboza, R. [1 ]
Buldu, J. M. [2 ,3 ]
Pisarchik, A. N. [4 ,5 ]
Boccaletti, S. [6 ,7 ]
Gutierrez, R. [8 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Enrique Diaz Leon, Lagos De Moreno 47460, Jalisco, Mexico
[2] Tech Univ Madrid, Ctr Biomed Technol, Lab Biol Networks, Madrid 28223, Spain
[3] Univ Rey Juan Carlos, Comp Syst Grp, Madrid 28933, Spain
[4] Tech Univ Madrid, Ctr Biomed Technol, Computat Syst Biol Grp, Madrid 28223, Spain
[5] Ctr Invest Opt, Leon 37150, Guanajuato, Mexico
[6] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[7] Italian Embassy Israel, IL-68125 Tel Aviv, Israel
[8] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
关键词
BIFURCATIONS;
D O I
10.1103/PhysRevE.91.032902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a methodology to analyze synchronization in an ensemble of diffusively coupled multistable systems. First, we study how two bidirectionally coupled multistable oscillators synchronize and demonstrate the high complexity of the basins of attraction of coexisting synchronous states. Then, we propose the use of the master stability function (MSF) for multistable systems to describe synchronizability, even during intermittent behavior, of a network of multistable oscillators, regardless of both the number of coupled oscillators and the interaction structure. In particular, we show that a network of multistable elements is synchronizable for a given range of topology spectra and coupling strengths, irrespective of specific attractor dynamics to which different oscillators are locked, and even in the presence of intermittency. Finally, we experimentally demonstrate the feasibility and robustness of the MSF approach with a network of multistable electronic circuits.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Synchronization of Interconnected Networks: The Role of Connector Nodes [J].
Aguirre, J. ;
Sevilla-Escoboza, R. ;
Gutierrez, R. ;
Papo, D. ;
Buldu, J. M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[2]   Fractal structures in nonlinear dynamics [J].
Aguirre, Jacobo ;
Viana, Ricardo L. ;
Sanjuan, Miguel A. F. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :333-386
[3]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[4]   EXPERIMENTAL-EVIDENCE OF SUB-HARMONIC BIFURCATIONS, MULTISTABILITY, AND TURBULENCE IN A Q-SWITCHED GAS-LASER [J].
ARECCHI, FT ;
MEUCCI, R ;
PUCCIONI, G ;
TREDICCE, J .
PHYSICAL REVIEW LETTERS, 1982, 49 (17) :1217-1220
[5]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[6]  
Benettin G., 1980, MECCANICA, V15, P9, DOI [DOI 10.1007/BF02128236, 10.1007/BF02128236]
[7]  
Benettin G., 1980, MECCANICA, V15, P21, DOI [10.1007/BF02128237, DOI 10.1007/BF02128237]
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[10]   Multistability of reentrant rhythms in an ionic model of a two-dimensional annulus of cardiac tissue [J].
Comtois, P ;
Vinet, A .
PHYSICAL REVIEW E, 2005, 72 (05)