Hot Electrons Modulation of Third-Harmonic Generation in Graphene

被引:34
作者
Soavi, Giancarlo [1 ,2 ]
Wang, Gang [1 ]
Rostami, Habib [3 ]
Tomadin, Andrea [4 ]
Balci, Osman [1 ]
Paradisanos, I. [1 ]
Pogna, Eva A. A. [5 ]
Cerullo, Giulio [5 ]
Lidorikis, Elefterios [6 ]
Polini, Marco [4 ]
Ferrari, Andrea C. [1 ]
机构
[1] Univ Cambridge, Cambridge Graphene Ctr, Cambridge CB3 0FA, England
[2] Friedrich Schiller Univ, Inst Festkorperphys, Max Wien Pl 1, D-07743 Jena, Germany
[3] Nord Inst Theoret Phys, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[4] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[5] Politecn Milan, Dipartimento Fis, CNR, IFN, Pzza L da Vinci 32, I-20133 Milan, Italy
[6] Univ Ioannina, Dept Mat Sci & Engn, GR-45110 Ioannina, Greece
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
graphene; hot electrons; third-harmonic generation; photonics; optoelectronics; nonlinear optics; ultrafast optics; 3RD HARMONIC-GENERATION; 2ND-HARMONIC GENERATION; FEMTOSECOND; GOLD; DISTRIBUTIONS; SPECTROSCOPY; SCATTERING; EFFICIENCY; PHOTONICS; EMISSION;
D O I
10.1021/acsphotonics.9b00928
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hot electrons dominate the ultrafast (similar to fs-ps) optical and electronic properties of metals and semiconductors, and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third-harmonic generation measurements on gated single-layer graphene and detect a significant deviation from the cubic power law expected for a third-harmonic generation process. We assign this to the presence of hot electrons. Our results indicate that the performance of nonlinear photonics devices based on graphene, such as optical modulators and frequency converters, can be affected by changes in the electronic temperature, which might occur due to an increase in absorbed optical power or Joule heating.
引用
收藏
页码:2841 / 2849
页数:17
相关论文
共 50 条
[31]   Midinfrared third-harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes [J].
Morris, D. T. ;
Pint, C. L. ;
Arvidson, R. S. ;
Luettge, A. ;
Hauge, R. H. ;
Belyanin, A. A. ;
Woods, G. L. ;
Kono, J. .
PHYSICAL REVIEW B, 2013, 87 (16)
[32]   Broadband third-harmonic generation on interfaces using femtosecond pulses [J].
Barbano, E. C. ;
Siqueira, J. P. ;
Mendonca, C. R. ;
Misoguti, L. ;
Zilio, S. C. .
NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS X, 2011, 7917
[33]   THIRD-HARMONIC GENERATION IN REGULAR DOMAIN STRUCTURES [J].
Tagiev, Z. H. ;
Kasumova, Rena J. ;
Safarova, G. A. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2010, 31 (04) :319-331
[34]   Enhanced terahertz third-harmonic generation by bound states in the continuum in graphene grating-like metamaterial [J].
Wang, Baoku ;
Liu, Jing ;
Cui, Jinhui ;
Liu, Jialin ;
Tian, Fengjun ;
Sun, Weimin ;
Li, Li .
FRONTIERS IN PHYSICS, 2023, 11
[35]   Ultrafast Opto-Electronic and Thermal Tuning of Third-Harmonic Generation in a Graphene Field Effect Transistor [J].
Ghaebi, Omid ;
Klimmer, Sebastian ;
Tornow, Nele ;
Buijssen, Niels ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Tomadin, Andrea ;
Rostami, Habib ;
Soavi, Giancarlo .
ADVANCED SCIENCE, 2024,
[36]   Third-harmonic Generation Enhanced by Nonlocal Effect [J].
Hu, Hao ;
Luo, Yu .
2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2017,
[37]   Enhanced terahertz third-harmonic generation based on the graphene-assisted meta-grating structure [J].
Yan, Dexian ;
Qiu, Yu ;
Zhao, Cuicui ;
Li, Xiangjun ;
Zhang, Le ;
Li, Jining .
DIAMOND AND RELATED MATERIALS, 2024, 142
[38]   Inverse problem of cascaded third-harmonic generation [J].
Li, Kun ;
Zhang, Bin .
OPTIK, 2008, 119 (01) :13-18
[39]   Evaluation of Nonlinear Optical Susceptibility of Polydiacetylenes by Third-Harmonic Generation [J].
Nakanishi, H. ;
Matsuda, H. ;
Okada, S. ;
Kato, M. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 1990, 1 (01) :75-79
[40]   Highly anisotropic microwave third-harmonic generation due to mobile carriers in a graphene superlattice [J].
Margulis, Vl.A. ;
Muryumin, E.E. .
Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142