EQUITABLE VERTEX ARBORICITY OF PLANAR GRAPHS

被引:13
作者
Zhang, Xin [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
Equitable coloring; Vertex arboricity; Planar graph; LINEAR ARBORICITY;
D O I
10.11650/tjm.19.2015.4422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(1) be a planar graph such that all cycles of length at most 4 are independent and let G(2) be a planar graph without 3-cycles and adjacent 4-cycles. It is proved that the set of vertices of G(1) and G(2) can be equitably partitioned into t subsets for every t > 3 so that each subset induces a forest. These results partially confirm a conjecture of Wu, Zhang and Li [5].
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
[31]   The Linear 2-Arboricity of Some Planar Graphs [J].
Xu, Changqing ;
Chang, Jingjing .
ARS COMBINATORIA, 2014, 114 :223-227
[32]   Rings whose total graphs have small vertex-arboricity and arboricity [J].
Fatehi, Morteza ;
Khashyarmanesh, Kazem ;
Mohammadian, Abbas .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (01) :110-119
[33]   List vertex arboricity of planar graphs with 5-cycles not adjacent to 3-cycles and 4-cycles [J].
Xue, Ling .
ARS COMBINATORIA, 2017, 133 :401-406
[34]   List vertex arboricity of graphs without forbidden minors [J].
Zhang, Xin .
ARS COMBINATORIA, 2017, 133 :349-353
[35]   A Weaker Version of a Conjecture on List Vertex Arboricity of Graphs [J].
Wei Wang ;
Baoyindureng Wu ;
Zhidan Yan ;
Nini Xue .
Graphs and Combinatorics, 2015, 31 :1779-1787
[36]   A Weaker Version of a Conjecture on List Vertex Arboricity of Graphs [J].
Wang, Wei ;
Wu, Baoyindureng ;
Yan, Zhidan ;
Xue, Nini .
GRAPHS AND COMBINATORICS, 2015, 31 (05) :1779-1787
[37]   Linear Arboricity of NIC-Planar Graphs [J].
Bei NIU ;
Xin ZHANG .
Acta Mathematicae Applicatae Sinica, 2019, 35 (04) :924-934
[38]   Linear Arboricity of NIC-Planar Graphs [J].
Niu, Bei ;
Zhang, Xin .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04) :924-934
[39]   A note of vertex arboricity of planar graphs without 4-cycles intersecting with 6-cycles [J].
Cui, Xuyang ;
Teng, Wenshun ;
Liu, Xing ;
Wang, Huijuan .
THEORETICAL COMPUTER SCIENCE, 2020, 836 :53-58
[40]   The linear arboricity of planar graphs with maximum degree at least 5 [J].
Chen, Hong-Yu ;
Qi, Jian-Ming .
INFORMATION PROCESSING LETTERS, 2012, 112 (20) :767-771