EQUITABLE VERTEX ARBORICITY OF PLANAR GRAPHS

被引:12
作者
Zhang, Xin [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
Equitable coloring; Vertex arboricity; Planar graph; LINEAR ARBORICITY;
D O I
10.11650/tjm.19.2015.4422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(1) be a planar graph such that all cycles of length at most 4 are independent and let G(2) be a planar graph without 3-cycles and adjacent 4-cycles. It is proved that the set of vertices of G(1) and G(2) can be equitably partitioned into t subsets for every t > 3 so that each subset induces a forest. These results partially confirm a conjecture of Wu, Zhang and Li [5].
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [21] On equitable list arboricity of graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    Pelsmajer, Michael J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 419 - 441
  • [22] Interpolation Theorems for the Arboricity and the Vertex Arboricity of Graphs
    Khoployklang, Teerasak
    Chaemchan, Araya
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (01): : 285 - 293
  • [23] A note on the vertex arboricity of signed graphs
    Liu, Weichan
    Gong, Chen
    Wu, Lifang
    Zhang, Xin
    UTILITAS MATHEMATICA, 2018, 106 : 251 - 258
  • [24] On the linear arboricity of planar graphs
    Wu, JL
    JOURNAL OF GRAPH THEORY, 1999, 31 (02) : 129 - 134
  • [25] Fractional vertex arboricity of graphs
    Yu, Qinglin
    Zuo, Liancui
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 245 - +
  • [26] A Result on Linear Arboricity of Planar Graphs
    Luo, Zhaoyang
    ARS COMBINATORIA, 2015, 120 : 403 - 412
  • [27] Strong Equitable Vertex Arboricity in Cartesian Product Networks
    Guo, Zhiwei
    Mao, Yaping
    Jia, Nan
    Li, He
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (02)
  • [28] The linear arboricity of planar graphs with no short cycles
    Wu, Jian-Liang
    Hou, Jian-Feng
    Liu, Gui-Zhen
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 230 - 233
  • [29] The Strong Equitable Vertex 1-Arboricity of Complete Bipartite Graphs and Balanced Complete k-Partite Graphs
    Laomala, Janejira
    Nakprasit, Keaitsuda Maneeruk
    Nakprasit, Kittikorn
    Ruksasakchai, Watcharintorn
    SYMMETRY-BASEL, 2022, 14 (02):
  • [30] The Linear 2-Arboricity of Some Planar Graphs
    Xu, Changqing
    Chang, Jingjing
    ARS COMBINATORIA, 2014, 114 : 223 - 227