EQUITABLE VERTEX ARBORICITY OF PLANAR GRAPHS

被引:13
作者
Zhang, Xin [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
Equitable coloring; Vertex arboricity; Planar graph; LINEAR ARBORICITY;
D O I
10.11650/tjm.19.2015.4422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(1) be a planar graph such that all cycles of length at most 4 are independent and let G(2) be a planar graph without 3-cycles and adjacent 4-cycles. It is proved that the set of vertices of G(1) and G(2) can be equitably partitioned into t subsets for every t > 3 so that each subset induces a forest. These results partially confirm a conjecture of Wu, Zhang and Li [5].
引用
收藏
页码:123 / 131
页数:9
相关论文
共 8 条
[1]  
Bondy J.A., 2008, GTM
[2]   Vertex and tree arboricities of graphs [J].
Chang, GJ ;
Chen, CY ;
Chen, YP .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) :295-306
[3]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+
[4]   BOUNDS FOR THE VERTEX LINEAR ARBORICITY [J].
MATSUMOTO, M .
JOURNAL OF GRAPH THEORY, 1990, 14 (01) :117-126
[5]   Equitable vertex arboricity of graphs [J].
Wu, Jian-Liang ;
Zhang, Xin ;
Li, Hailuan .
DISCRETE MATHEMATICS, 2013, 313 (23) :2696-2701
[6]  
Yu QL, 2007, LECT NOTES COMPUT SC, V4381, P245
[7]   A Conjecture on Equitable Vertex Arboricity of Graphs [J].
Zhang, Xin ;
Wu, Jian-Liang .
FILOMAT, 2014, 28 (01) :217-219
[8]  
Zuo LC, 2006, ARS COMBINATORIA, V81, P175