GEOMETRIC EVOLUTION OF BILAYERS UNDER THE DEGENERATE FUNCTIONALIZED CAHN-HILLIARD EQUATION

被引:0
|
作者
Dai, Shibin [1 ]
Luong, Toai [1 ]
Ma, X., I [1 ,2 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Grand View Univ, Dept Chem, Des Moines, IA 50316 USA
来源
MULTISCALE MODELING & SIMULATION | 2022年 / 20卷 / 03期
基金
美国国家科学基金会;
关键词
bilayers; functionalized Cahn-Hilliard energy; degenerate mobility; asymptotic analysis; geometric evolution; INTERFACES; CHEMISTRY; SYSTEMS;
D O I
10.1137/21M1467791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a multiscale analysis, we derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn-Hilliard equation with a cutoff diffusion mobility M(u) that is degenerate for u <= 0 and a continuously differentiable double-well potential W(u). We show that the bilayer interface does not move in the t = O(1) time scale. The interface motion occurs in the t = O(epsilon-1) time scale and is determined by porous medium diffusion processes in both phases with no jumps on the interface. In the longer O(epsilon-2) time scale, the interface motion is a complex combination of porous medium diffusion processes in both phases and the property of mass conservation.
引用
收藏
页码:1127 / 1146
页数:20
相关论文
共 50 条
  • [31] Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow
    Liu, Ju
    Dede, Luca
    Evans, John A.
    Borden, Micheal J.
    Hughes, Thomas J. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 321 - 350
  • [32] A conservative numerical method for the Cahn-Hilliard equation in complex domains
    Shin, Jaemin
    Jeong, Darae
    Kim, Junseok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7441 - 7455
  • [33] Mobility inference of the Cahn-Hilliard equation from a model experiment
    Mao, Zirui
    Demkowicz, Michael J.
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (13) : 2830 - 2842
  • [34] On the Limit Problem Arising in the Kinetic Derivation of a Cahn-Hilliard Equation
    Elbar, Charles
    Perthame, Benoit
    Skrzeczkowski, Jakub
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (11)
  • [35] A class of three dimensional Cahn-Hilliard equation with nonlinear diffusion
    Zhao, Xiaopeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 1 - 39
  • [36] Attractors for the Cahn-Hilliard equation with memory in 2D
    Conti, Monica
    Zelati, Michele Coti
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1668 - 1682
  • [37] Layer dynamics for the one dimensional ε-dependent Cahn-Hilliard/Allen-Cahn equation
    Antonopoulou, D. C.
    Karali, G.
    Tzirakis, K.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [38] Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory
    Nastar, Maylise
    SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIALS, PTS 1-2, 2011, 172-174 : 321 - 330
  • [39] A practical and efficient numerical method for the Cahn-Hilliard equation in complex domains
    Jeong, Darae
    Yang, Junxiang
    Kim, Junseok
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 73 : 217 - 228
  • [40] A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation
    Wang, Ting-chun
    Zhao, Li-mei
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04): : 863 - 878