Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation

被引:23
作者
Rasmussen, Peter Mondrup [1 ,2 ]
Abrahamsen, Trine Julie [1 ]
Madsen, Kristoffer Hougaard [1 ,3 ]
Hansen, Lars Kai [1 ]
机构
[1] Tech Univ Denmark, DTU Informat, Kongens Lyngby, Denmark
[2] Aarhus Univ Hosp, Danish Natl Res Fdn, Ctr Functionally Integrat Neurosci, Aarhus, Denmark
[3] Univ Copenhagen, Hvidovre Hosp, Danish Res Ctr Magnet Resonance, DK-1168 Copenhagen, Denmark
基金
英国医学研究理事会;
关键词
Multivariate analysis; Classification; Decoding; Nonlinear modeling; Kernel PCA; Pre-image estimation; NPAIRS resampling; FMRI DATA; QUANTITATIVE-EVALUATION; PREDICTION; NPAIRS; ACTIVATION; PATTERNS; REMOVAL; MODEL; PCA;
D O I
10.1016/j.neuroimage.2012.01.096
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigate the use of kernel principal component analysis (PCA) and the inverse problem known as pre-image estimation in neuroimaging: i) We explore kernel PCA and pre-image estimation as a means for image denoising as part of the image preprocessing pipeline. Evaluation of the denoising procedure is performed within a data-driven split-half evaluation framework. ii) We introduce manifold navigation for exploration of a nonlinear data manifold, and illustrate how pre-image estimation can be used to generate brain maps in the continuum between experimentally defined brain states/classes. We base these illustrations on two fMRI BOLD data sets - one from a simple finger tapping experiment and the other from an experiment on object recognition in the ventral temporal lobe. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1807 / 1818
页数:12
相关论文
共 49 条
[1]  
Abrahamsen T.J., 2009, Machine Learning for Signal Processing, P1
[2]   Regularized Pre-image Estimation for Kernel PCA De-noising Input Space Regularization and Sparse Reconstruction [J].
Abrahamsen, Trine Julie ;
Hansen, Lars Kai .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03) :403-412
[3]  
Arias P., 2007, 18-23 jun, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, P1
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Functional magnetic resonance image analysis of a large-scale neurocognitive network [J].
Bullmore, ET ;
RabeHesketh, S ;
Morris, RG ;
Williams, SCR ;
Gregory, L ;
Gray, JA ;
Brammer, MJ .
NEUROIMAGE, 1996, 4 (01) :16-33
[6]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[7]   Exploring predictive and reproducible Modeling with the single-subject FIAC dataset [J].
Chen, X ;
Pereira, F ;
Lee, W ;
Strother, S ;
MitcheI, T .
HUMAN BRAIN MAPPING, 2006, 27 (05) :452-461
[8]  
Dambreville S., 2006, IS T SPIE S EL IM B, V6064(B)
[9]   The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results [J].
Eickhoff, SB ;
Amunts, K ;
Mohlberg, H ;
Zilles, K .
CEREBRAL CORTEX, 2006, 16 (02) :268-279
[10]  
Friston K. J., 1994, HUM BRAIN MAPP, V2, P189, DOI [10.1002/hbm.460020402, DOI 10.1002/HBM.460020402]