ELLIPTIC OPERATORS AND K-HOMOLOGY

被引:0
作者
Duwenig, Anna [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
关键词
K-homology; Fredholm modules; distributional Fourier transform;
D O I
10.1216/rmj.2020.50.91
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a differential operator D on a smooth Hermitian vector bundle S over a compact manifold M is symmetric, it is essentially self adjoint and so admits the use of functional calculus. If D is also elliptic, then the Hilbert space of square integrable sections of S with the canonical left C(M)-action and the operator chi(D) for chi a normalizing function is a Fredholm module, and its K-homology class is independent of chi. In this expository article, we provide a detailed proof of this fact following the outline in the book "Analytic K-homology" by Higson and Roe.
引用
收藏
页码:91 / 124
页数:34
相关论文
共 13 条
  • [1] [Anonymous], 1998, PITMAN RES NOTES MAT
  • [2] [Anonymous], 2000, Analytic K-Homology
  • [3] [Anonymous], EINFUHRUNG HOHERE AN
  • [4] [Anonymous], 1978, ERGEBNISSE MATH IHRE
  • [5] [Anonymous], 1959, P AM MATH SOC, DOI 10.1090/s0002-9939-1959-0113131-7
  • [6] [Anonymous], 2008, GRADUATE TEXTS MATH
  • [7] Blackadar B., 2006, encyclopedia of Mathematical Sciences, P122
  • [8] Conlon L., 2001, Differentiable Manifolds, DOI 10.1007/978-0-8176-4767-4
  • [9] Conway J. B., 1990, GRADUATE TEXTS MATH
  • [10] Folland G. B., 1999, Real analysis: modern techniques and their applications, V40