Smoothing effect and large time behavior of solutions to nonlinear elastic wave equations with viscoelastic term

被引:4
作者
Kagei, Yoshiyuki [1 ]
Takeda, Hiroshi [2 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[2] Fukuoka Inst Technol, Fac Engn, Dept Intelligent Mech Engn, 3-30-1 Wajirohigashi,Higashi Ku, Fukuoka 8110295, Japan
关键词
Nonlinear elastic wave equation; Damping terms; Consistency; Smoothing effect; Asymptotic profile; The Cauchy problem; GLOBAL EXISTENCE; ASYMPTOTIC PROFILES; STABILITY; DECAY;
D O I
10.1016/j.na.2022.112826
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for a nonlinear elastic wave equation with viscoelastic damping terms is considered on the 3 dimensional whole space. Decay and smoothing properties of the solutions are investigated when the initial data are sufficiently small; and asymptotic profiles as t -> infinity are also derived. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:36
相关论文
共 50 条
[31]   Stability and Instability of Traveling Wave Solutions to Nonlinear Wave Equations [J].
Anderson, John ;
Zbarsky, Samuel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) :95-184
[32]   ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC WAVE EQUATION WITH A DELAY TERM [J].
Wu, Shun-Tang .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03) :765-784
[33]   Stability of Large Solutions to Quasilinear Wave Equations [J].
Alinhac, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2543-2574
[34]   On a class of nonlinear heat equations with viscoelastic term [J].
Le Xuan Truong ;
Nguyen Van Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) :216-232
[35]   Global Wellposedness and Large Time Behavior of Solutions to the Hall-Magnetohydrodynamics Equations [J].
Zhai, Xiaoping .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (04) :395-419
[36]   Global existence and energy decay result for a weak viscoelastic wave equations with a dynamic boundary and nonlinear delay term [J].
Ferhat, Mohamed ;
Hakem, Ali .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (03) :779-804
[37]   The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping [J].
Jiang, Zaihong ;
Zhu, Mingxuan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (01) :97-102
[38]   A Class of Viscoelastic Wave Equations with Exponential Source and the Nonlinear Strong Damping [J].
Liao, Menglan .
TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06) :1105-1134
[39]   REMARKS ON LARGE TIME BEHAVIOR OF THE L2-NORM OF SOLUTIONS TO STRONGLY DAMPED WAVE EQUATIONS [J].
Ikehata, Ryo ;
Onodera, Michiaki .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (7-8) :505-520
[40]   Energy Decay Estimates of Solutions for Viscoelastic Damped Wave Equations in Rn [J].
Berbiche, Mohamed .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) :3175-3214