Smoothing effect and large time behavior of solutions to nonlinear elastic wave equations with viscoelastic term

被引:4
作者
Kagei, Yoshiyuki [1 ]
Takeda, Hiroshi [2 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[2] Fukuoka Inst Technol, Fac Engn, Dept Intelligent Mech Engn, 3-30-1 Wajirohigashi,Higashi Ku, Fukuoka 8110295, Japan
关键词
Nonlinear elastic wave equation; Damping terms; Consistency; Smoothing effect; Asymptotic profile; The Cauchy problem; GLOBAL EXISTENCE; ASYMPTOTIC PROFILES; STABILITY; DECAY;
D O I
10.1016/j.na.2022.112826
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for a nonlinear elastic wave equation with viscoelastic damping terms is considered on the 3 dimensional whole space. Decay and smoothing properties of the solutions are investigated when the initial data are sufficiently small; and asymptotic profiles as t -> infinity are also derived. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:36
相关论文
共 31 条
[1]   Global existence of nonlinear elastic waves [J].
Agemi, R .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :225-250
[2]  
Alinhac S, 2009, UNIVERSITEXT, pIX
[3]   ON THE EXISTENCE OF SOLUTIONS TO THE EQUATION UTT = UXXT + SIGMA-(UX)X [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (02) :200-231
[4]  
Bergh J., 1976, Grundlehren der Mathematischen Wissenschaften, V223, P207, DOI [10.1007/978-3-642-66451-9, DOI 10.1007/978-3-642-66451-9]
[5]  
Brenner P., 1975, LECT NOTES MATH, V434, pii+
[6]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, P323, DOI [10.1090/cln/010, DOI 10.1090/CLN/010]
[7]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[8]   Semilinear structural damped waves [J].
D'Abbicco, M. ;
Reissig, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) :1570-1592
[9]  
Evans LC., 1998, Partial Differential Equations
[10]   LOCAL AND GLOBAL SMOOTHING EFFECTS FOR SOME LINEAR HYPERBOLIC EQUATIONS WITH A STRONG DISSIPATION [J].
Ghisi, Marina ;
Gobbino, Massimo ;
Haraux, Alain .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (03) :2039-2079