A unified approach to improved Lp hardy inequalities with best constants

被引:180
作者
Barbatis, G
Filippas, S
Tertikas, A
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[3] Univ Crete, Dept Math, Iraklion 71409, Greece
[4] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
关键词
hardy inequalities; best constants; distance function; weighted norms;
D O I
10.1090/S0002-9947-03-03389-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unified approach to improved L-p Hardy inequalities in R-N. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where the distance is taken from a surface of codimension 1 < k < N. In our main result, we add to the right hand side of the classical Hardy inequality a weighted L-p norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L-q norms, q not equal p.
引用
收藏
页码:2169 / 2196
页数:28
相关论文
共 26 条
[1]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[2]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[3]   COMPLETE BLOW-UP AFTER TMAX FOR THE SOLUTION OF A SEMILINEAR HEAT-EQUATION [J].
BARAS, P ;
COHEN, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) :142-174
[4]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[5]   Extremal functions for Hardy's inequality with weight [J].
Brezis, H ;
Marcus, M ;
Shafrir, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) :177-191
[6]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[7]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[8]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[9]   THE HYPERBOLIC GEOMETRY AND SPECTRUM OF IRREGULAR DOMAINS [J].
DAVIES, EB ;
MANDOUVALOS, N .
NONLINEARITY, 1990, 3 (03) :913-945
[10]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389