High resolution atomic force microscopy with an active piezoelectric microcantilever

被引:8
|
作者
Nasrabadi, Hazhir Mahmoodi [1 ]
Mahdavi, Mohammad [1 ]
Soleymaniha, Mohammadreza [1 ]
Moheimani, S. O. Reza [1 ]
机构
[1] Univ Texas Dallas, Erik Jonsson Sch Engn & Comp Sci, Richardson, TX 75080 USA
关键词
FREQUENCY-RESPONSE; CANTILEVERS; NOISE; ARTIFACTS; AMPLIFIER; SENSOR; SPEED;
D O I
10.1063/5.0090668
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Active microcantilevers with on-chip sensing and actuation provide significant advantages in tapping mode Atomic Force Microscopy (AFM). Collocated transduction allows for effective manipulation of cantilever dynamics through feedback control, enabling higher scan rates. However, the adjacency of the sensing and actuation electrodes is known to result in a high level of feedthrough, leading to a low imaging resolution. Readout circuit noise further deteriorates the imaging precision. Here, we investigate the noise sources that affect AFM microcantilevers with collocated aluminum nitride (AlN) actuator-sensor pairs. We reported these cantilevers in earlier work and demonstrated that they display a very low level of feedthrough between the actuation and sensing electrodes. We present a high signal-to-noise ratio (SNR) sensing method that enables us to demonstrate high-resolution AFM on a calibration grating with nm-step silicon carbide (SiC) terraces. Measuring the Lorentzian response of the cantilever's Brownian motion with the on-chip active sensor at resonance enables us to calibrate the dynamic stiffness at the first fundamental resonance mode, without utilizing an optical sensor. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy imaging in liquids
    Rasool, Haider I.
    Wilkinson, Paul R.
    Stieg, Adam Z.
    Gimzewski, James K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (02)
  • [33] Development of novel and sensitive sensors based on microcantilever of atomic force microscope
    Jin Yan
    Wang Kemin
    Jin Rong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2006, 16 (05) : 445 - 451
  • [34] Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy
    Boubekri, R.
    Cambril, E.
    Couraud, L.
    Bernardi, L.
    Madouri, A.
    Portail, M.
    Chassagne, T.
    Moisson, C.
    Zielinski, M.
    Jiao, S.
    Michaud, J-F
    Alquier, D.
    Bouloc, J.
    Nony, L.
    Bocquet, F.
    Loppacher, C.
    Martrou, D.
    Gauthier, S.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (05)
  • [35] High harmonic exploring on different materials in dynamic atomic force microscopy
    Zheng, ZhiYue
    Xu, Rui
    Ye, ShiLi
    Hussain, Sabir
    Ji, Wei
    Cheng, Peng
    Li, YanJun
    Sugawara, Yasuhiro
    Cheng, ZhiHai
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (03) : 446 - 452
  • [36] Quantum state atomic force microscopy
    Passian, Ali
    Siopsis, George
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [37] Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy
    Schulz, Fabian
    Ritala, Juha
    Krejci, Ondrej
    Seitsonen, Ari Paavo
    Foster, Adam S.
    Liljeroth, Peter
    ACS NANO, 2018, 12 (06) : 5274 - 5283
  • [38] Active damping by Q-control for fast force-distance curve measurements in atomic force microscopy
    Kohl, D.
    Kerschner, C.
    Schitter, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (12)
  • [39] Lateral Force Calibration in Atomic Force Microscopy: Minireview
    Wang, Huabin
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (01) : 56 - 64
  • [40] Stochastic noise in atomic force microscopy
    Labuda, Aleksander
    Lysy, Martin
    Paul, William
    Miyahara, Yoichi
    Gruetter, Peter
    Bennewitz, Roland
    Sutton, Mark
    PHYSICAL REVIEW E, 2012, 86 (03):