High resolution atomic force microscopy with an active piezoelectric microcantilever

被引:8
|
作者
Nasrabadi, Hazhir Mahmoodi [1 ]
Mahdavi, Mohammad [1 ]
Soleymaniha, Mohammadreza [1 ]
Moheimani, S. O. Reza [1 ]
机构
[1] Univ Texas Dallas, Erik Jonsson Sch Engn & Comp Sci, Richardson, TX 75080 USA
关键词
FREQUENCY-RESPONSE; CANTILEVERS; NOISE; ARTIFACTS; AMPLIFIER; SENSOR; SPEED;
D O I
10.1063/5.0090668
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Active microcantilevers with on-chip sensing and actuation provide significant advantages in tapping mode Atomic Force Microscopy (AFM). Collocated transduction allows for effective manipulation of cantilever dynamics through feedback control, enabling higher scan rates. However, the adjacency of the sensing and actuation electrodes is known to result in a high level of feedthrough, leading to a low imaging resolution. Readout circuit noise further deteriorates the imaging precision. Here, we investigate the noise sources that affect AFM microcantilevers with collocated aluminum nitride (AlN) actuator-sensor pairs. We reported these cantilevers in earlier work and demonstrated that they display a very low level of feedthrough between the actuation and sensing electrodes. We present a high signal-to-noise ratio (SNR) sensing method that enables us to demonstrate high-resolution AFM on a calibration grating with nm-step silicon carbide (SiC) terraces. Measuring the Lorentzian response of the cantilever's Brownian motion with the on-chip active sensor at resonance enables us to calibrate the dynamic stiffness at the first fundamental resonance mode, without utilizing an optical sensor. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Separate-type scanner and wideband high-voltage amplifier for atomic-resolution and high-speed atomic force microscopy
    Miyata, Kazuki
    Usho, Satoshi
    Yamada, Satoshi
    Furuya, Shoji
    Yoshida, Kiyonori
    Asakawa, Hitoshi
    Fukuma, Takeshi
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (04)
  • [22] Active Piezoelectric Shunt Control of an Atomic Force Microscope Micro-Cantilever
    Fairbairn, Matthew W.
    Mueller, Philipp
    Moheimani, S. O. Reza
    2013 3RD AUSTRALIAN CONTROL CONFERENCE (AUCC), 2013, : 257 - 262
  • [23] Q Control of an Atomic Force Microscope Microcantilever: A Sensorless Approach
    Fairbairn, Matthew W.
    Moheimani, S. O. Reza
    Fleming, Andrew J.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (06) : 1372 - 1381
  • [24] Daniell method for power spectral density estimation in atomic force microscopy
    Labuda, Aleksander
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (03)
  • [25] Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy
    Kumar, Sandip
    Cartron, Michael L.
    Mullin, Nic
    Qian, Pu
    Leggett, Graham J.
    Hunter, C. Neil
    Hobbs, Jamie K.
    ACS NANO, 2017, 11 (01) : 126 - 133
  • [26] High-Resolution Frequency-Modulation Atomic Force Microscopy in Liquids Using Electrostatic Excitation Method
    Umeda, Ken-ichi
    Oyabu, Noriaki
    Kobayashi, Kei
    Hirata, Yoshiki
    Matsushige, Kazumi
    Yamada, Hirofumi
    APPLIED PHYSICS EXPRESS, 2010, 3 (06)
  • [27] Applied physics - High-speed atomic force microscopy
    Hansma, Paul K.
    Schitter, Georg
    Fantner, Georg E.
    Prater, Craig
    SCIENCE, 2006, 314 (5799) : 601 - 602
  • [28] Simultaneous atomic-resolution flexural and torsional imaging in liquid by frequency modulation atomic force microscopy
    Umemoto, Megumi
    Kawamura, Ryuzo
    Yoshikawa, Hiroshi Y.
    Nakabayashi, Seiichiro
    Kobayashi, Naritaka
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SI)
  • [29] Active Q control in tuning-fork-based atomic force microscopy
    Jahng, Junghoon
    Lee, Manhee
    Noh, Hanheol
    Seo, Yongho
    Jhe, Wonho
    APPLIED PHYSICS LETTERS, 2007, 91 (02)
  • [30] An ultrafast piezoelectric Z-scanner with a resonance frequency above 1.1 MHz for high-speed atomic force microscopy
    Shimizu, Masahiro
    Okamoto, Chihiro
    Umeda, Kenichi
    Watanabe, Shinji
    Ando, Toshio
    Kodera, Noriyuki
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (01)