D-optimal Factorial Designs under Generalized Linear Models

被引:10
作者
Yang, Jie [1 ]
Mandal, Abhyuday [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
关键词
D-optimality; Exchange algorithm; Factorial design; Generalized linear model; Lift-one algorithm; Minimally supported design;
D O I
10.1080/03610918.2013.815773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalized linear models (GLMs) have been used widely for modeling the mean response both for discrete and continuous random variables with an emphasis on categorical response. Recently Yang, Mandal and Majumdar (2013) considered full factorial and fractional factorial locally D-optimal designs for binary response and two-level experimental factors. In this article, we extend their results to a general setup with response belonging to a single-parameter exponential family and for multilevel predictors.
引用
收藏
页码:2264 / 2277
页数:14
相关论文
共 21 条
[1]  
Anderson CJ, 2013, POISSON REGRESSION R
[2]  
[Anonymous], MODEL ASSISTED STAT
[3]  
[Anonymous], 1992, An Introduction to Generalized Linear Models, DOI [DOI 10.2307/1269239, 10.2307/1269239]
[4]  
[Anonymous], 2009, EXPT PLANNING ANAL O
[5]  
Atkinson A.C., 2007, OPTIMUM EXPT DESIGNS
[6]  
Bailey R.A., 1960, ASTIN Bulletin, V1, P192
[7]   Bayesian experimental design: A review [J].
Chaloner, K ;
Verdinelli, I .
STATISTICAL SCIENCE, 1995, 10 (03) :273-304
[8]   LOCALLY OPTIMAL DESIGNS FOR ESTIMATING PARAMETERS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (04) :586-602
[9]   RECENT ADVANCES IN NONLINEAR EXPERIMENTAL-DESIGN [J].
FORD, I ;
TITTERINGTON, DM ;
KITSOS, CP .
TECHNOMETRICS, 1989, 31 (01) :49-60
[10]   Maximin designs for exponential growth models and heteroscedastic polynomial models [J].
Imhof, LA .
ANNALS OF STATISTICS, 2001, 29 (02) :561-576