Objective bayesian analysis for multiple repairable systems

被引:2
作者
D'Andrea, Amanda M. E. [1 ]
Tomazella, Vera L. D. [1 ]
Aljohani, Hassan M. [2 ]
Ramos, Pedro L. [3 ]
Almeida, Marco P. [1 ,4 ]
Louzada, Francisco [4 ]
Verssani, Bruna A. W. [5 ]
Gazon, Amanda B. [1 ]
Afify, Ahmed Z. [6 ]
机构
[1] Univ Fed Sao Carlos, Dept Stat, Sao Carlos, Brazil
[2] Taif Univ, Coll Sci, Dept Math & Stat, At Taif, Saudi Arabia
[3] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[4] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
[5] Univ Sao Paulo, Dept Exact Sci, Piracicaba, Brazil
[6] Benha Univ, Dept Stat Math & Insurance, Banha, Egypt
来源
PLOS ONE | 2021年 / 16卷 / 11期
关键词
POWER-LAW PROCESSES; INFERENCE; DISTRIBUTIONS; INTENSITY; SELECTION; POLICIES; MODEL;
D O I
10.1371/journal.pone.0258581
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article focus on the analysis of the reliability of multiple identical systems that can have multiple failures over time. A repairable system is defined as a system that can be restored to operating state in the event of a failure. This work under minimal repair, it is assumed that the failure has a power law intensity and the Bayesian approach is used to estimate the unknown parameters. The Bayesian estimators are obtained using two objective priors know as Jeffreys and reference priors. We proved that obtained reference prior is also a matching prior for both parameters, i.e., the credibility intervals have accurate frequentist coverage, while the Jeffreys prior returns unbiased estimates for the parameters. To illustrate the applicability of our Bayesian estimators, a new data set related to the failures of Brazilian sugar cane harvesters is considered.
引用
收藏
页数:19
相关论文
共 43 条
  • [11] A GENERAL DEFINITION OF RESIDUALS
    COX, DR
    SNELL, EJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1968, 30 (02) : 248 - &
  • [12] Cox DR, 1980, POINT PROCESSES
  • [13] Crow L.H., 1974, RELIABILITY ANAL COM
  • [14] CROW LH, 1990, P ANNU REL MAINT SYM, P275
  • [15] Datta G S., 2012, Probability matching priors: higher order asymptotics, Volume, V178
  • [16] Datta GS, 1996, ANN STAT, V24, P141
  • [17] Power Law Selection Model for Repairable Systems
    De Oliveira, Maristela Dias
    Colosimo, Enrico A.
    Gilardoni, Gustavo L.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (04) : 570 - 578
  • [18] Bayesian inference for power law processes with applications in repairable systems
    de Oliveira, Maristela Dias
    Colosimo, Enrico A.
    Gilardoni, Gustavo L.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (05) : 1151 - 1160
  • [19] Hierarchical modelling of power law processes for the analysis of repairable systems with different truncation times: An empirical Bayes approach
    dos Reis, Rodrigo Citton P.
    Colosimo, Enrico A.
    Gilardoni, Gustavo L.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (02) : 374 - 396
  • [20] FIRTH D, 1993, BIOMETRIKA, V80, P27, DOI 10.2307/2336755