Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila

被引:261
作者
Maurange, Cedric [1 ]
Cheng, Louise [1 ]
Gould, Alex P. [1 ]
机构
[1] Natl Inst Med Res, MRC, London NW7 1AA, England
基金
英国医学研究理事会;
关键词
D O I
10.1016/j.cell.2008.03.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this temporal series, regulate key events in many different neuroblast lineages during late neurogenesis. First, they schedule a switch in the cell size and identity of neurons involving the targets Chinmo and Broad Complex. Second, they regulate the time at which neuroblasts undergo Prospero-dependent cell-cycle exit or Reaper/Hid/Grim-dependent apoptosis. Both types of progenitor termination require the combined action of a late phase of the temporal series and indirect feedforward via Castor targets such as Grainyhead and Dichaete. These studies identify the timing mechanism ending CNS proliferation and reveal how aging progenitors transduce bursts of transcription factors into long-lasting changes in cell proliferation and cell identity.
引用
收藏
页码:891 / 902
页数:12
相关论文
共 58 条
[1]   Regulation of post-embryonic neuroblasts by Drosophila Grainyhead [J].
Almeida, MS ;
Bray, SJ .
MECHANISMS OF DEVELOPMENT, 2005, 122 (12) :1282-1293
[2]   A pulse of the Drosophila Hox protein abdominal-A schedules the end of neural proliferation via neuroblast apoptosis [J].
Bello, BC ;
Hirth, F ;
Gould, AP .
NEURON, 2003, 37 (02) :209-219
[3]   The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila [J].
Bello, Bruno ;
Reichert, Heinrich ;
Hirth, Frank .
DEVELOPMENT, 2006, 133 (14) :2639-2648
[4]   Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells [J].
Betschinger, J ;
Mechtler, K ;
Knoblich, JA .
CELL, 2006, 124 (06) :1241-1253
[5]   Dare to be different:: Asymmetric cell division in Drosophila, C-elegans and vertebrates [J].
Betschinger, J ;
Knoblich, JA .
CURRENT BIOLOGY, 2004, 14 (16) :R674-R685
[6]   The embryonic central nervous system lineages of Drosophila melanogaster .1. Neuroblast lineages derived from the ventral half of the neuroectoderm [J].
Bossing, T ;
Udolph, G ;
Doe, CQ ;
Technau, GM .
DEVELOPMENTAL BIOLOGY, 1996, 179 (01) :41-64
[7]   EMBRYONIC EXPRESSION PATTERN OF A FAMILY OF DROSOPHILA PROTEINS THAT INTERACT WITH A CENTRAL NERVOUS-SYSTEM REGULATORY ELEMENT [J].
BRAY, SJ ;
BURKE, B ;
BROWN, NH ;
HIRSH, J .
GENES & DEVELOPMENT, 1989, 3 (08) :1130-1145
[8]   Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development [J].
Brody, T ;
Odenwald, WF .
DEVELOPMENTAL BIOLOGY, 2000, 226 (01) :34-44
[9]   Use of time-lapse imaging and dominant negative receptors to dissect the steroid receptor control of neuronal remodeling in Drosophila [J].
Brown, HLD ;
Cherbas, L ;
Cherbas, P ;
Truman, JW .
DEVELOPMENT, 2006, 133 (02) :275-285
[10]   Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process [J].
Caviness, VS ;
Goto, T ;
Tarui, T ;
Takahashi, T ;
Bhide, PG ;
Nowakowski, RS .
CEREBRAL CORTEX, 2003, 13 (06) :592-598