Microcavity coupled quantum dot emission with detuning control

被引:1
|
作者
Yang, Zhen [1 ]
Ma, Penghua [1 ]
Bai, Guilin [1 ]
Sun, Baoquan [1 ]
Du, Wei [1 ]
Wang, Tao [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, 199 Renai Rd, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-PHOTON EMISSION; ROOM-TEMPERATURE; NANOCRYSTALS;
D O I
10.1364/OL.456995
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Solution processed colloidal semiconductor quantum dots (QDs) have sire-tunable optical transitions and high quantum efficiencies, enabling various applications in opto-electronic devices. To enrich the functionality of QD-based opto-electronic devices, colloidal semiconductor QDs have been frequently coupled with optical cavities to enable emission modulation. However, it remains a challenge to fully understand the interaction between the optical cavity resonance and the QD emission, especially for the planar optical microcavities. Here, we have investigated the light emission of colloidal semiconductor QDs in the planar Fabry-Perot microcavity consisted of two Ag mirrors. With the matched QD and cavity resonance, the microcavity coupled QD samples show a prominently narrower emission line-width and emission angle range because of the efficient QD-cavity coupling, while with a slightly positive or negative energy detuning, the linewidth and angular distribution of the microcavity coupled QD emission both become broadened. Furthermore, with the standard lithography technique, the microcavity coupled QD sample can be patterned into arbitrail , geometries, showing extra features of in-plane mode confinement. Our work highlights the important role of detuning in determining the coupling between colloidal semiconductor QDs and microcavities and paves the way for the future design of microcavity coupled QD devices. (C) 2022 Optica Publishing Group
引用
收藏
页码:2089 / 2092
页数:4
相关论文
共 50 条
  • [21] Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators
    Bianucci, Pablo
    Zhi, Yanyan
    Marsiglio, Frank
    Silverstone, Josh
    Meldrum, Al
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (03): : 639 - 645
  • [22] Effect of magnetic field on polariton emission characteristics of a quantum-well microcavity diode
    Bhattacharya, Pallab
    Das, Ayan
    Bhowmick, Sishir
    Jankowski, Marc
    Lee, Chi-sen
    APPLIED PHYSICS LETTERS, 2012, 100 (17)
  • [23] Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity
    Luk, Ting Shan
    Xiong, Shisheng
    Chow, Weng W.
    Miao, Xiaoyu
    Subramania, Ganapathi
    Resnick, Paul J.
    Fischer, Arthur J.
    Brinker, Jeffrey C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (06) : 1365 - 1373
  • [24] Multi-Color Emission in Quantum-Dot-Quantum-Well Semiconductor Heteronanocrystals
    Kostic, R.
    Stojanovic, D.
    ACTA PHYSICA POLONICA A, 2009, 116 (04) : 598 - 602
  • [25] Polymer spacer tunable Purcell-enhanced spontaneous emission in perovskite quantum dots coupled to plasmonic nanowire networks
    Li, Hanmei
    He, Futao
    Ji, Chuankun
    Zhu, Weiwei
    Xu, Yuanqing
    Zhang, Wenkai
    Meng, Xianrui
    Fang, Xiaomin
    Ding, Tao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (41) : 22831 - 22838
  • [26] Demultiplexed single-photon source with a quantum dot coupled to microresonator
    Rakhlin, M. V.
    Galimov, A. I.
    Dyakonov, I. V.
    Skryabin, N. N.
    Klimko, G. V.
    Kulagina, M. M.
    Zadiranov, Yu. M.
    Sorokin, S. V.
    Sedova, I. V.
    Guseva, Yu. A.
    Berezina, D. S.
    Serov, Yu. M.
    Maleev, N. A.
    Kuzmenkov, A. G.
    Troshkov, S. I.
    Taratorin, K. V.
    Skalkin, A. K.
    Straupe, S. S.
    Kulik, S. P.
    Shubina, T. V.
    Toropov, A. A.
    JOURNAL OF LUMINESCENCE, 2023, 253
  • [27] Carrier wavefunction control in a dilute nitride-based quantum well-a quantum dot tunnel injection system for 1.3 μm emission
    Rudno-Rudzinski, W.
    Ryczko, K.
    Sek, G.
    Misiewicz, J.
    Semenova, E. S.
    Lemaitre, A.
    Ramdane, A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (08)
  • [28] Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids
    Zhitomirsky, David
    Voznyy, Oleksandr
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2013, 7 (06) : 5282 - 5290
  • [29] Stimulated emission from CsPbBr3 quantum dot nanoglass
    Liu, Yang
    Gao, Zhenhua
    Zhang, Weiguang
    Sun, Xun
    Wang, Zifei
    Wang, Xue
    Xu, Baoyuan
    Meng, Xiangeng
    OPTICAL MATERIALS EXPRESS, 2019, 9 (08): : 3390 - 3405
  • [30] Field-emission from quantum-dot-in-perovskite solids
    de Arquer, F. Pelayo Garcia
    Gong, Xiwen
    Sabatini, Randy P.
    Liu, Min
    Kim, Gi-Hwan
    Sutherland, Brandon R.
    Voznyy, Oleksandr
    Xu, Jixian
    Pang, Yuangjie
    Hoogland, Sjoerd
    Sinton, David
    Sargent, Edward
    NATURE COMMUNICATIONS, 2017, 8