Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs

被引:31
作者
Ballani, Jonas [1 ]
Grasedyck, Lars [2 ]
机构
[1] Ecole Polytech Fed Lausanne, MATHICSE ANCHP, CH-1015 Lausanne, Switzerland
[2] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2015年 / 3卷 / 01期
关键词
parametric PDE; hierarchical Tucker; low-rank tensor; cross approximation;
D O I
10.1137/140960980
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parametric PDEs appear in a large number of applications such as, e.g., uncertainty quantification and optimization. In many cases, one is interested in scalar output quantities induced by the parameter-dependent solution. The output can be interpreted as a tensor living on a high-dimensional parameter space. Our aim is to adaptively construct an approximation of this tensor in a data-sparse hierarchical tensor format. Once this approximation from an offline computation is available, the evaluation of the output for any parameter value becomes a cheap online task. Moreover, the explicit tensor representation can be used to compute stochastic properties of the output in a straightforward way. The potential of this approach is illustrated by numerical examples.
引用
收藏
页码:852 / 872
页数:21
相关论文
共 32 条
[1]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[2]   A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM REVIEW, 2010, 52 (02) :317-355
[3]  
Back J., 2011, Lect. Notes Comput. Sci. Eng., V76, P43
[4]   TREE ADAPTIVE APPROXIMATION IN THE HIERARCHICAL TENSOR FORMAT [J].
Ballani, Jonas ;
Grasedyck, Lars .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) :A1415-A1431
[5]   Black box approximation of tensors in hierarchical Tucker format [J].
Ballani, Jonas ;
Grasedyck, Lars ;
Kluge, Melanie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) :639-657
[6]  
Bebendorf M, 2000, NUMER MATH, V86, P565, DOI 10.1007/s002110000192
[7]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[8]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[9]   Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems [J].
Chen, Peng ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (01) :187-216
[10]   High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs [J].
Chkifa, Abdellah ;
Cohen, Albert ;
Schwab, Christoph .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (04) :601-633