The equality case in a Poincare-Wirtinger type inequality

被引:3
作者
Brandolini, Barbara [1 ]
Chiacchio, Francesco [1 ]
Krejcirik, David [2 ]
Trombetti, Cristina [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[2] Acad Sci Czech Republic, Inst Nucl Phys, Dept Theoret Phys, Rez, Czech Republic
关键词
Hermite operator; Neumann eigenvalues; thin strips; ISOPERIMETRIC-INEQUALITIES; NEUMANN EIGENVALUE; CONVEX DOMAINS; GAUSS SPACE; PERTURBATIONS;
D O I
10.4171/RLM/743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that, for any convex planar set Omega, the first non-trivial Neumann eigenvalue mu(1)(Omega) of the Hermite operator is greater than or equal to 1. Under the additional assumption that W is contained in a strip, we show that mu(1)(Omega) = 1 if and only if W is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.
引用
收藏
页码:443 / 464
页数:22
相关论文
共 22 条
[1]   Eigenvalue Comparison on Bakry-Emery Manifolds [J].
Andrews, Ben ;
Ni, Lei .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (11) :2081-2092
[2]  
[Anonymous], 1953, Methods of mathematical physics
[3]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[4]   Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain [J].
Arrieta, JM ;
Carvalho, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) :143-178
[5]   NEUMANN EIGENVALUE PROBLEMS ON EXTERIOR PERTURBATIONS OF THE DOMAIN [J].
ARRIETA, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :54-103
[6]   Some new results on eigenvectors via dimension, diameter, and Ricci curvature [J].
Bakry, D ;
Qian, ZM .
ADVANCES IN MATHEMATICS, 2000, 155 (01) :98-153
[7]  
Brandolini B, 2013, DIFFER INTEGRAL EQU, V26, P639
[8]   Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems [J].
Brandolini, Barbara ;
Chiacchio, Francesco ;
Trombetti, Cristina .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) :31-45
[9]   AN OPTIMAL POINCARE-WIRTINGER INEQUALITY IN GAUSS SPACE [J].
Brandolini, Barbara ;
Chiacchio, Francesco ;
Henrot, Antoine ;
Trombetti, Cristina .
MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) :449-457
[10]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389