Zeta functions that hear the shape of a Riemann surface

被引:7
作者
Cornelissen, Gunther [2 ]
Marcolli, Matilde [1 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1016/j.geomphys.2007.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose "Riemannian" aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson-Sullivan measured We prove that the ergodic rigidity theorem for this boundary action implies that the zeta functions of the spectral triple suffice to characterize the (anti-)complex isomorphism class of the corresponding Riemann surface. Thus, you can hear the complex analytic shape of a Riemann surface, by listening to a suitable spectral triple. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:619 / 632
页数:14
相关论文
共 39 条
[31]  
Schreier O., 1928, Abh. Math. Sem. Univ. Hamburg, V6, P303, DOI [10.1007/BF02940620, DOI 10.1007/BF02940620]
[32]   DISCRETE CONFORMAL GROUPS AND MEASURABLE DYNAMICS [J].
SULLIVAN, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (01) :57-73
[33]  
SULLIVAN D, 1979, I HAUTES ETUDES SCI, P00171
[34]   RIEMANNIAN COVERINGS AND ISOSPECTRAL MANIFOLDS [J].
SUNADA, T .
ANNALS OF MATHEMATICS, 1985, 121 (01) :169-186
[35]   A RIGIDITY THEOREM FOR MOBIUS GROUPS [J].
TUKIA, P .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :405-431
[36]  
TUKIA P, 1985, I HAUTES ETUDES SCI, P171
[37]  
Vigneras M.-F., 1978, C R ACAD SCI PARIS A, V287, pA47
[38]   ISOSPECTRAL AND NON-ISOMETRIC RIEMANNIAN-MANIFOLDS [J].
VIGNERAS, MF .
ANNALS OF MATHEMATICS, 1980, 112 (01) :21-32
[39]   Mostow rigidity of rank 1 discrete groups with ergodic Bowen-Margulis measure [J].
Yue, CB .
INVENTIONES MATHEMATICAE, 1996, 125 (01) :75-102