Zeta functions that hear the shape of a Riemann surface

被引:7
作者
Cornelissen, Gunther [2 ]
Marcolli, Matilde [1 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1016/j.geomphys.2007.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose "Riemannian" aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson-Sullivan measured We prove that the ergodic rigidity theorem for this boundary action implies that the zeta functions of the spectral triple suffice to characterize the (anti-)complex isomorphism class of the corresponding Riemann surface. Thus, you can hear the complex analytic shape of a Riemann surface, by listening to a suitable spectral triple. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:619 / 632
页数:14
相关论文
共 39 条
[1]  
Bär C, 2007, J NONCOMMUT GEOM, V1, P385
[2]   The Dirac operator on space forms of positive curvature [J].
Bar, C .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1996, 48 (01) :69-83
[3]   FINITELY GENERATED KLEINIAN-GROUPS - AN INTRODUCTION [J].
BERS, L .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (03) :313-327
[4]  
Borel A., 1991, GRADUATE TEXTS MATH
[5]  
Bowen R., 1979, PUBLICATIONS MATH IH, V50, P11, DOI [10.1007/BF02684767, DOI 10.1007/BF02684767]
[6]   Mutually isospectral Riemann surfaces [J].
Brooks, R ;
Gornet, R ;
Gustafson, WH .
ADVANCES IN MATHEMATICS, 1998, 138 (02) :306-322
[7]  
Buser P., 1992, Progress in Mathematics, Vvol. 106
[8]  
Christensen E, 2006, J OPERAT THEOR, V56, P17
[9]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[10]   COMPACT METRIC-SPACES, FREDHOLM MODULES, AND HYPERFINITENESS [J].
CONNES, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :207-220