Synergistic folding of two intrinsically disordered proteins: searching for conformational selection

被引:47
作者
Ganguly, Debabani [1 ]
Zhang, Weihong [1 ]
Chen, Jianhan [1 ]
机构
[1] Kansas State Univ, Dept Biochem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
FLY-CASTING MECHANISM; CREB-BINDING-PROTEIN; UNSTRUCTURED PROTEINS; MOLECULAR-DYNAMICS; INDUCED-FIT; NONNATIVE INTERACTIONS; STRUCTURAL DIVERSITY; ENERGY LANDSCAPES; COUPLED BINDING; RECOGNITION;
D O I
10.1039/c1mb05156c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intrinsically disordered proteins (IDPs) lack stable structures under physiological conditions but often fold into stable structures upon specific binding. These coupled binding and folding processes underlie the organization of cellular regulatory networks, and a mechanistic understanding is thus of fundamental importance. Here, we investigated the synergistic folding of two IDPs, namely, the NCBD domain of transcription coactivator CBP and the p160 steroid receptor coactivator ACTR, using a topology-based model that was carefully calibrated to balance intrinsic folding propensities and intermolecular interactions. As one of the most structured IDPs, NCBD is a plausible candidate that interacts through conformational selection-like mechanisms, where binding is mainly initiated by pre-existing folded-like conformations. Indeed, the simulations demonstrate that, even though binding and folding of both NCBD and ACTR is highly cooperative on the baseline level, the tertiary folding of NCBD is best described by the "extended conformational selection'' model that involves multiple stages of selection and induced folding. The simulations further predict that the NCBD/ACTR recognition is mainly initiated by forming a mini folded core that includes the second and third helices of NCBD and ACTR. These predictions are fully consistent with independent physics-based atomistic simulations as well as a recent experimental mapping of the H/D exchange protection factors. The current work thus adds to the limited number of existing mechanistic studies of coupled binding and folding of IDPs, and provides a first direct demonstration of how conformational selection might contribute to efficient recognition of IDPs. Interestingly, even for highly structured IDPs like NCBD, the recognition is initiated by the more disordered C-terminal segment and with substantial contribution from induced folding. Together with existing studies of IDP interaction mechanisms, this argues that induced folding is likely prevalent in IDP-protein interaction, and emphasizes the importance of understanding how IDPs manage to fold efficiently upon (nonspecific) binding. Success of the current study also further supports the notion that, with careful calibration, topology-based models can be effective tools for mechanistic study of IDP interaction and regulation, especially when combined with physics-based atomistic simulations and experiments.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 96 条
  • [1] Protein folding pathways from replica exchange simulations and a kinetic network model
    Andrec, M
    Felts, AK
    Gallicchio, E
    Levy, RM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) : 6801 - 6806
  • [2] Nonnative Electrostatic Interactions Can Modulate Protein Folding: Molecular Dynamics with a Grain of Salt
    Azia, Ariel
    Levy, Yaakov
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2009, 393 (02) : 527 - 542
  • [3] Mapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction
    Bachmann, Annett
    Wildemann, Dirk
    Praetorius, Florian
    Fischer, Gunter
    Kiefhaber, Thomas
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (10) : 3952 - 3957
  • [4] Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27Kip1
    Bienkiewicz, EA
    Adkins, JN
    Lumb, KJ
    [J]. BIOCHEMISTRY, 2002, 41 (03) : 752 - 759
  • [5] The role of dynamic conformational ensembles in biomolecular recognition
    Boehr, David D.
    Nussinov, Ruth
    Wright, Peter E.
    [J]. NATURE CHEMICAL BIOLOGY, 2009, 5 (11) : 789 - 796
  • [6] Protein folded states are kinetic hubs
    Bowman, Gregory R.
    Pande, Vijay S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (24) : 10890 - 10895
  • [7] Progress and challenges in the automated construction of Markov state models for full protein systems
    Bowman, Gregory R.
    Beauchamp, Kyle A.
    Boxer, George
    Pande, Vijay S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (12)
  • [8] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614
  • [9] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217
  • [10] Network and graph analyses of folding free energy surfaces
    Caflisch, A
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2006, 16 (01) : 71 - 78