Gravitationally Decoupled Strange Star Model beyond the Standard Maximum Mass Limit in Einstein-Gauss-Bonnet Gravity

被引:73
作者
Maurya, S. K. [1 ]
Singh, Ksh Newton [2 ]
Govender, M. [3 ]
Hansraj, Sudan [4 ]
机构
[1] Univ Nizwa, Coll Arts & Sci, Dept Math & Phys Sci, Nizwa, Oman
[2] Natl Def Acad, Dept Phys, Pune 411023, Maharashtra, India
[3] Durban Univ Technol, Dept Math, ZA-4000 Durban, South Africa
[4] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa
关键词
APPROACHING SCHWARZSCHILD LIMIT; DYNAMICAL INSTABILITY; QUARK STARS; RELATIVITY; EQUATION;
D O I
10.3847/1538-4357/ac4255
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recent theoretical advance known as the minimal geometric deformation (MGD) method has initiated renewed interest in investigating higher-curvature gravitational effects in relativistic astrophysics. In this work, we model a strange star within the context of Einstein-Gauss-Bonnet gravity with the help of the MGD technique. Starting off with the Tolman metric ansatz, together with the MIT bag model equation of state applicable to hadronic matter, anisotropy is introduced via the superposition of the seed source and the decoupled energy-momentum tensor. The solution of the governing systems of equations bifurcates into two distinct models, namely, the mimicking of the theta sector to the seed radial pressure and energy density and a regular fluid model. Each of these models can be interpreted as self-gravitating static, compact objects with the exterior described by the vacuum Boulware-Deser solution. Utilizing observational data for three stellar candidates, namely PSR J1614-2230, PSR J1903+317, and LMC X-4, we subject our solutions to rigorous viability tests based on regularity and stability. We find that the Einstein-Gauss-Bonnet parameter and the decoupling constant compete against each other for ensuring physically realizable stellar structures. The novel feature of the work is the demonstration of stable compact objects with stellar masses in excess of M = 2 M (circle dot) without appealing to exotic matter. The analysis contributes new insights and physical consequences concerning the development of ultracompact astrophysical entities.
引用
收藏
页数:18
相关论文
共 100 条
[31]   Accelerated expansion of the Universe in Gauss-Bonnet gravity [J].
Dehghani, MH .
PHYSICAL REVIEW D, 2004, 70 (06) :064009-1
[32]   A two-solar-mass neutron star measured using Shapiro delay [J].
Demorest, P. B. ;
Pennucci, T. ;
Ransom, S. M. ;
Roberts, M. S. E. ;
Hessels, J. W. T. .
NATURE, 2010, 467 (7319) :1081-1083
[33]   Relativistic stars in 4D Einstein-Gauss-Bonnet gravity [J].
Doneva, Daniela D. ;
Yazadjiev, Stoytcho S. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (05)
[34]   Is RX J1856.5-3754 a quark star? [J].
Drake, JJ ;
Marshall, HL ;
Dreizler, S ;
Freeman, PE ;
Fruscione, A ;
Juda, M ;
Kashyap, V ;
Nicastro, F ;
Pease, DO ;
Wargelin, BJ ;
Werner, K .
ASTROPHYSICAL JOURNAL, 2002, 572 (02) :996-1001
[35]   The trace-free Einstein equations and inflation [J].
Ellis, George F. R. .
GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (01) :1-14
[36]   On the trace-free Einstein equations as a viable alternative to general relativity [J].
Ellis, George F. R. ;
van Elst, Henk ;
Murugan, Jeff ;
Uzan, Jean-Philippe .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (22)
[37]   STRANGE MATTER [J].
FARHI, E ;
JAFFE, RL .
PHYSICAL REVIEW D, 1984, 30 (11) :2379-2390
[38]   On the nature and evolution of the unique binary pulsar J1903+0327 [J].
Freire, P. C. C. ;
Bassa, C. G. ;
Wex, N. ;
Stairs, I. H. ;
Champion, D. J. ;
Ransom, S. M. ;
Lazarus, P. ;
Kaspi, V. M. ;
Hessels, J. W. T. ;
Kramer, M. ;
Cordes, J. M. ;
Verbiest, J. P. W. ;
Podsiadlowski, P. ;
Nice, D. J. ;
Deneva, J. S. ;
Lorimer, D. R. ;
Stappers, B. W. ;
McLaughlin, M. A. ;
Camilo, F. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (04) :2763-2780
[39]   Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime [J].
Glavan, Drazen ;
Lin, Chunshan .
PHYSICAL REVIEW LETTERS, 2020, 124 (08)
[40]   Israel conditions for the Gauss-Bonnet theory and the Friedmann equation on the brane universe [J].
Gravanis, E ;
Willison, S .
PHYSICS LETTERS B, 2003, 562 (1-2) :118-126