Electro-mechanical Casimir effect

被引:20
作者
Sanz, Mikel [1 ]
Wieczorek, Witlef [2 ]
Groblacher, Simon [3 ]
Solano, Enrique [1 ,4 ,5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Phys Chem, E-48080 Bilbao, Spain
[2] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Kemivagen 9, SE-41296 Gothenburg, Sweden
[3] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[4] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
[5] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
来源
QUANTUM | 2018年 / 2卷
基金
欧洲研究理事会;
关键词
ALUMINUM NITRIDE; RADIATION; PHOTONS; CAVITY; FORCE;
D O I
10.22331/q-2018-09-03-91
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical Casimir effect is an intriguing phenomenon in which photons are generated from vacuum due to a non-adiabatic change in some boundary conditions. In particular, it connects the motion of an accelerated mechanical mirror to the generation of photons. While pioneering experiments demonstrating this effect exist, a conclusive measurement involving a mechanical generation is still missing. We show that a hybrid system consisting of a piezoelectric mechanical resonator coupled to a superconducting cavity may allow to electro-mechanically generate measurable photons from vacuum, intrinsically associated to the dynamical Casimir effect. Such an experiment may be achieved with current technology, based on film bulk acoustic resonators directly coupled to a superconducting cavity. Our results predict a measurable photon generation rate, which can he further increased through additional improvements such as using superconducting metamaterials.
引用
收藏
页数:10
相关论文
共 48 条
[1]   A novel experimental approach for the detection of the dynamical Casimir effect [J].
Braggio, C ;
Bressi, G ;
Carugno, G ;
Del Noce, C ;
Galeazzi, G ;
Lombardi, A ;
Palmieri, A ;
Ruoso, G ;
Zanello, D .
EUROPHYSICS LETTERS, 2005, 70 (06) :754-760
[2]  
Casimir H B G., 1948, Proc. K. Ned. Akad. Wet., V51, P793, DOI DOI 10.4236/WJNSE.2015.52007
[3]   Model for resonant photon creation in a cavity with time-dependent conductivity [J].
Crocce, M ;
Dalvit, DAR ;
Lombardo, FC ;
Mazzitelli, FD .
PHYSICAL REVIEW A, 2004, 70 (03) :033811-1
[4]  
Dalvit D. A. R., 2011, Casimir Physics, P419
[5]   Extracavity quantum vacuum radiation from a single qubit [J].
De Liberato, S. ;
Gerace, D. ;
Carusotto, I. ;
Ciuti, C. .
PHYSICAL REVIEW A, 2009, 80 (05)
[6]   Quantum teleportation of propagating quantum microwaves [J].
Di Candia, R. ;
Fedorov, K. G. ;
Zhong, L. ;
Felicetti, S. ;
Menzel, E. P. ;
Sanz, M. ;
Deppe, F. ;
Marx, A. ;
Gross, R. ;
Solano, E. .
EPJ QUANTUM TECHNOLOGY, 2015, 2
[7]   Dual-path methods for propagating quantum microwaves [J].
Di Candia, R. ;
Menzel, E. P. ;
Zhong, L. ;
Deppe, F. ;
Marx, A. ;
Gross, R. ;
Solano, E. .
NEW JOURNAL OF PHYSICS, 2014, 16
[8]  
Di Ventra M, 2008, ELECT TRANSPORT NANO
[9]   Current status of the dynamical Casimir effect [J].
Dodonov, V. V. .
PHYSICA SCRIPTA, 2010, 82 (03)
[10]   Generation and detection of photons in a cavity with a resonantly oscillating boundary [J].
Dodonov, VV ;
Klimov, AB .
PHYSICAL REVIEW A, 1996, 53 (04) :2664-2682