Critical exponent for semi-linear structurally damped wave equation of derivative type

被引:13
作者
Tuan Anh Dao [1 ,2 ]
Fino, Ahmad Z. [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[2] TU Bergakad Freiberg, Fac Math & Comp Sci, Freiberg, Germany
[3] Lebanese Univ, Fac Sci, Dept Math, POB 1352, Tripoli, Lebanon
关键词
critical exponent; fractional Laplacian; nonlinear evolution equations; structural damping; EXISTENCE;
D O I
10.1002/mma.6649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to study the following semi-linear structurally damped wave equation with nonlinearity of derivative type: u(tt) - Delta u + mu(-Delta)(sigma/2)u(t) = vertical bar u(t vertical bar)(p), u(0,x) = u(0)(x), u(t)(0,x) = u(1)(x), with mu > 0, n >= 1, sigma is an element of(0,2], and p > 1. In particular, we would like to prove the nonexistence of global weak solutions by using a new test function and suitable sign assumptions on the initial data in both the subcritical case and the critical case.
引用
收藏
页码:9766 / 9775
页数:10
相关论文
共 50 条
[41]   Critical behavior of semi-linear elliptic equations with sub-critical exponents [J].
Wolansky, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (05) :971-995
[42]   On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities [J].
Messaoudi, Salim A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) :5114-5126
[43]   Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities [J].
Messaoudi, Salim A. ;
Al-Smail, Jamal H. ;
Talahmeh, Ala A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) :1863-1875
[44]   Robust exponential attractors for a class of non-autonomous semi-linear second-order evolution equation with memory and critical nonlinearity [J].
Zhang, Fang-hong ;
Wang, Shan-lin ;
Wang, Li .
APPLICABLE ANALYSIS, 2019, 98 (06) :1052-1084
[46]   Bubble solutions for Henon type equation with nearly critical exponent in RN [J].
Liu, Zhongyuan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 213
[47]   A blowup solution of a complex semi-linear heat equation with an irrational power [J].
Duong, Giao Ky .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) :4975-5048
[48]   Critical blow-up exponent for a doubly dispersive quasilinear wave equation [J].
Liu, Bingchen ;
Liu, Mengyao .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04)
[49]   Existence Results for Critical Semi-linear Equations on Heisenberg Group Domains [J].
Gamara, Najoua ;
Guemri, Habiba ;
Amri, Amine .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) :803-831
[50]   WELL-POSEDNESS RESULTS FOR FRACTIONAL SEMI-LINEAR WAVE EQUATIONS [J].
Djida, Jean-Daniel ;
Fernandez, Arran ;
Area, Ivan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02) :569-597