Critical exponent for semi-linear structurally damped wave equation of derivative type

被引:13
作者
Tuan Anh Dao [1 ,2 ]
Fino, Ahmad Z. [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[2] TU Bergakad Freiberg, Fac Math & Comp Sci, Freiberg, Germany
[3] Lebanese Univ, Fac Sci, Dept Math, POB 1352, Tripoli, Lebanon
关键词
critical exponent; fractional Laplacian; nonlinear evolution equations; structural damping; EXISTENCE;
D O I
10.1002/mma.6649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to study the following semi-linear structurally damped wave equation with nonlinearity of derivative type: u(tt) - Delta u + mu(-Delta)(sigma/2)u(t) = vertical bar u(t vertical bar)(p), u(0,x) = u(0)(x), u(t)(0,x) = u(1)(x), with mu > 0, n >= 1, sigma is an element of(0,2], and p > 1. In particular, we would like to prove the nonexistence of global weak solutions by using a new test function and suitable sign assumptions on the initial data in both the subcritical case and the critical case.
引用
收藏
页码:9766 / 9775
页数:10
相关论文
共 50 条
[21]   EXISTENCE OF NODAL SOLUTION FOR SEMI-LINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT ON SINGULAR MANIFOLD [J].
Liu, Xiaochun ;
Mei, Yuan .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) :543-555
[22]   THE POINT-WISE ESTIMATES OF SOLUTIONS FOR SEMI-LINEAR DISSIPATIVE WAVE EQUATION [J].
Liu, Yongqin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) :237-252
[23]   A SEMI-LINEAR SHIFTED WAVE EQUATION ON THE HYPERBOLIC SPACES WITH APPLICATION ON A QUINTIC WAVE EQUATION ON R2 [J].
Shen, Ruipeng ;
Staffilani, Gigliola .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) :2809-2864
[24]   Lp-Lq ESTIMATES FOR THE DAMPED WAVE EQUATION AND THE CRITICAL EXPONENT FOR THE NONLINEAR PROBLEM WITH SLOWLY DECAYING DATA [J].
Ikeda, Masahiro ;
Inui, Takahisa ;
Okamoto, Mamoru ;
Wakasugi, Yuta .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :1967-2008
[25]   Small solutions to semi-linear wave equations with radial data of critical regularity [J].
Hidano, Kunio .
REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) :693-708
[26]   Critical exponent for the Cauchy problem to the weakly coupled damped wave system [J].
Nishihara, Kenji ;
Wakasugi, Yuta .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 108 :249-259
[27]   CRITICAL EXPONENT FOR A DAMPED WAVE SYSTEM WITH FRACTIONAL INTEGRAL [J].
Wu, Mijing ;
Li, Shengjia ;
Lu, Liqing .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[28]   Critical exponent for damped wave equations with nonlinear memory [J].
Fino, Ahmad Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5495-5505
[29]   ON A CLASS OF CHOQUARD-TYPE EQUATION WITH UPPER CRITICAL EXPONENT AND INDEFINITE LINEAR PART [J].
Wu, Huiling ;
Xu, Haiping .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02) :464-478
[30]   Semi-linear Wave Equations with Effective Damping [J].
Marcello DABBICCO ;
Sandra LUCENTE ;
Michael REISSIG .
ChineseAnnalsofMathematics(SeriesB), 2013, 34 (03) :345-380