Critical exponent for semi-linear structurally damped wave equation of derivative type

被引:13
作者
Tuan Anh Dao [1 ,2 ]
Fino, Ahmad Z. [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[2] TU Bergakad Freiberg, Fac Math & Comp Sci, Freiberg, Germany
[3] Lebanese Univ, Fac Sci, Dept Math, POB 1352, Tripoli, Lebanon
关键词
critical exponent; fractional Laplacian; nonlinear evolution equations; structural damping; EXISTENCE;
D O I
10.1002/mma.6649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to study the following semi-linear structurally damped wave equation with nonlinearity of derivative type: u(tt) - Delta u + mu(-Delta)(sigma/2)u(t) = vertical bar u(t vertical bar)(p), u(0,x) = u(0)(x), u(t)(0,x) = u(1)(x), with mu > 0, n >= 1, sigma is an element of(0,2], and p > 1. In particular, we would like to prove the nonexistence of global weak solutions by using a new test function and suitable sign assumptions on the initial data in both the subcritical case and the critical case.
引用
收藏
页码:9766 / 9775
页数:10
相关论文
共 19 条
[1]   A NECESSARY AND SUFFICIENT CONDITIONS FOR EXISTENCE OF NON NEGATIVE SOLUTIONS FOR SOME SEMILINEAR NON MONOTONE EQUATIONS [J].
BARAS, P ;
PIERRE, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (03) :185-212
[2]   Quantitative local and global a priori estimates for fractional nonlinear diffusion equations [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2014, 250 :242-284
[3]   A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :1-40
[4]   A classification of structural dissipations for evolution operators [J].
D'Abbicco, M. ;
Ebert, M. R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2558-2582
[5]   An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 :16-34
[6]   Semilinear structural damped waves [J].
D'Abbicco, M. ;
Reissig, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) :1570-1592
[7]  
Dao TA, SPRINGER INDAM SERIE
[8]  
Dao TA, ARXIV200206582V1
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   Global existence for semi-linear structurally damped σ-evolution models [J].
Duong Trieu Pham ;
Mezadek, Mohamed Kainane ;
Reissig, Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) :569-596