Probabilistic Analysis of Solar Cell Performance Using Gaussian Processes

被引:0
作者
Jaiswal, Rahul [1 ,2 ]
Martinez-Ramon, Manel [2 ]
Busani, Tito [1 ,2 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Elect & Comp Engn Dept, Albuquerque, NM 87131 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2022年 / 12卷 / 02期
关键词
Predictive models; Training; Data models; Semiconductor device modeling; Performance evaluation; Gaussian processes; Databases; machine learning; PERC cell; photovoltaics; TCAD simulation; FREE-CARRIER ABSORPTION; SIMULATION;
D O I
10.1109/JPHOTOV.2022.3143457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article investigates the application of machine learning-based probabilistic prediction methodologies to estimate the performance of silicon-based solar cells. The concept of confidence-bound regions is introduced and the advantages of this concept are discussed in detail. The results show that the optical and electrical performance of a photovoltaic device can be accurately estimated using Gaussian processes with accurate knowledge of the uncertainty in the prediction values. It is also shown that cell design parameters can be estimated for a desired performance metric and trained machine learning models can be deployed as a standalone application.
引用
收藏
页码:652 / 658
页数:7
相关论文
共 29 条
  • [1] The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
    Chicco, Davide
    Warrens, Matthijs J.
    Jurman, Giuseppe
    [J]. PEERJ COMPUTER SCIENCE, 2021,
  • [2] Chung Y., 2019, ARXIV180808294CS
  • [3] Clugston DA, 1997, PROG PHOTOVOLTAICS, V5, P229, DOI 10.1002/(SICI)1099-159X(199707/08)5:4<229::AID-PIP164>3.0.CO
  • [4] 2-6
  • [5] Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling
    Duttagupta, Shubham
    Ma, Fajun
    Hoex, Bram
    Mueller, Thomas
    Aberle, Armin G.
    [J]. INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES 2011, SYMPOSIUM O, 2012, 15 : 78 - 83
  • [6] Gulli A., 2017, Deep Learning with Keras
  • [7] Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors
    Holman, Zachary C.
    Filipic, Miha
    Lipovsek, Benjamin
    De Wolf, Stefaan
    Smole, Franc
    Topic, Marko
    Ballif, Christophe
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 : 426 - 430
  • [8] Using a Novel Transfer Learning Method for Designing Thin Film Solar Cells with Enhanced Quantum Efficiencies
    Kaya, Mine
    Hajimirza, Shima
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity
    Kaya, Mine
    Hajimirza, Shima
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION .1. MODEL-EQUATIONS AND CONCENTRATION-DEPENDENCE
    KLAASSEN, DBM
    [J]. SOLID-STATE ELECTRONICS, 1992, 35 (07) : 953 - 959