On Severi Type Inequalities for Irregular Surfaces

被引:11
|
作者
Lu, Xin [1 ]
Zuo, Kang [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
关键词
D O I
10.1093/imrn/rnx127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a minimal surface of general type and of maximal Albanese dimension. We show that K-X(2) >= 4 chi(O-X) + 4(q - 2), if K-X(2) < 9/2 chi(O-X) and we also obtain the characterization of the equality. As a consequence, we prove a conjecture that the surfaces of general type and of maximal Albanese dimension with K-X(2) = 4 chi(O-X) are exactly the minimal resolution of the double covers of abelian surfaces branched over ample divisors with at worst simple singularities, and we also prove a conjecture of Manetti on the geography of irregular surfaces if K-X(2) >= 36(q - 2) or chi(O-X) >= 8(q - 2).]
引用
收藏
页码:231 / 248
页数:18
相关论文
共 50 条
  • [1] Severi type inequalities for irregular surfaces with ample canonical class
    Lopes, Margarida Mendes
    Pardini, Rita
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (02) : 401 - 414
  • [2] On Severi type inequalities
    Zhi Jiang
    Mathematische Annalen, 2021, 379 : 133 - 158
  • [3] On Severi type inequalities
    Jiang, Zhi
    MATHEMATISCHE ANNALEN, 2021, 379 (1-2) : 133 - 158
  • [4] Surfaces of Albanese general type and the Severi conjecture
    Manetti, M
    MATHEMATISCHE NACHRICHTEN, 2003, 261 : 105 - 122
  • [5] Noether-Severi inequality and equality for irregular threefolds of general type
    Hu, Yong
    Zhang, Tong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (787): : 241 - 273
  • [6] A SEVERI TYPE THEOREM FOR SURFACES IN P6
    De Poi, Pietro
    Ilardi, Giovanna
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 591 - 605
  • [7] Surfaces on the Severi line
    Angel Barja, Miguel
    Pardini, Rita
    Stoppino, Lidia
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (05): : 734 - 743
  • [8] Quotients of Severi–Brauer Surfaces
    A. S. Trepalin
    Doklady Mathematics, 2021, 104 : 390 - 393
  • [9] On Severi Varieties on Hirzebruch Surfaces
    Tyomkin, Ilya
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [10] Surfaces close to the Severi lines
    Conti, Federico
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (01) : 71 - 88