MSFYOLO: Feature fusion-based detection for small objects

被引:23
|
作者
Song, Ziying [1 ,2 ]
Zhang, Yu [2 ]
Liu, Yi [2 ]
Yang, Kuihe [2 ]
Sun, Meiling [2 ]
机构
[1] Hebei Normal Univ Sci & Technol, Qinhuangdao 066000, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
关键词
Feature extraction; Object detection; Semantics; Training; Mathematical models; Task analysis; Information science; Feature extraction network; Feature pyramid; Multi-scale feature fusion;
D O I
10.1109/TLA.2022.9693567
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
At present, the effect of object detection algorithm in small object detection is very poor, mainly because the low-level network lacks semantic information and the characteristic information expressed by small object inspection data is very lack. In view of the above difficulties, this paper proposes a small object detection algorithm based on multi-scale feature fusion. By learning shallow features at the shallow level and deep features at the deep level, the proposed multi-scale feature learning scheme focuses on the fusion of concrete features and abstract features. It constructs object detector (MSFYOLO) based on multi-scale deep feature learning network and considers the relationship between a single object and local environment. Combining global information with local information, the feature pyramid is constructed by fusing different depth feature layers in the network. In addition, this paper also proposes a new feature extraction network (CourNet), through the way of feature visualization compared with the mainstream backbone network, the network can better express the small object feature information. The proposed algorithm is valuated on the MS COCO and achieved leading performance with 11.7% improvement in FPS, 17.0% improvement in AP, 81.0% improvement in ARS, and 23.3% reduction in computational FPLOs compared to YOLOv3. This study shows that the combination of global information and local information is helpful to detect the expression of small objects in different illumination. MSFYOLO uses CourNet as the backbone network, which has high efficiency and a good balance between accuracy and speed.
引用
收藏
页码:823 / 830
页数:8
相关论文
共 50 条
  • [31] A Data Fusion-Based Fire Detection System
    Ting, Ying-Yao
    Hsiao, Chi-Wei
    Wang, Huan-Sheng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04): : 977 - 984
  • [32] Multisensor fusion-based gas detection module
    Guo J.-H.
    Chien I.-C.
    Su K.-L.
    Wu C.-J.
    Artificial Life and Robotics, 2011, 16 (1) : 16 - 20
  • [33] A Multi-feature Fusion-based Deep Learning for Insulator Image Identification and Fault Detection
    Huang, Xinlei
    Shang, Erbo
    Xue, Jiande
    Ding, Hongwen
    Li, Panpan
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1957 - 1960
  • [34] Multimodal Attention-Enhanced Feature Fusion-Based Weakly Supervised Anomaly Violence Detection
    Shin, Jungpil
    Miah, Abu Saleh Musa
    Kaneko, Yuta
    Hassan, Najmul
    Lee, Hyoun-Sup
    Jang, Si-Woong
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2025, 6 : 129 - 140
  • [35] Feature Selection and the Fusion-based Method for Enhancing the Classification Accuracy of SVM for Breast Cancer Detection
    Ahmed, Ali
    Malebary, Sharaf J.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (11): : 55 - 60
  • [36] Self-Attention Guidance and Multiscale Feature Fusion-Based UAV Image Object Detection
    Zhang, Yunzuo
    Wu, Cunyu
    Zhang, Tian
    Liu, Yameng
    Zheng, Yuxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [37] A Multi-Feature Fusion-Based Automatic Detection Method for High-Severity Defects
    Liu, Jie
    Liang, Cangming
    Feng, Jintao
    Xiao, Anhong
    Zeng, Hui
    Wu, Qujin
    Yu, Tonglan
    ELECTRONICS, 2023, 12 (14)
  • [38] A Small Object Detection Network Based on Multiple Feature Enhancement and Feature Fusion
    Tan K.
    Ding S.
    Wu S.
    Tian K.
    Ren J.
    Scientific Programming, 2023, 2023
  • [39] An interlayer feature fusion-based heterogeneous graph neural network
    Ke Feng
    Guozheng Rao
    Li Zhang
    Qing Cong
    Applied Intelligence, 2023, 53 : 25626 - 25639
  • [40] A feature fusion-based prognostics approach for rolling element bearings
    Ugochukwu Ejike Akpudo
    Jang-Wook Hur
    Journal of Mechanical Science and Technology, 2020, 34 : 4025 - 4035