Waveguide Engineering of Graphene Optoelectronics-Modulators and Polarizers

被引:49
作者
Meng, Yuan [1 ]
Ye, Shengwei [2 ]
Shen, Yijie [1 ]
Xiao, Qirong [1 ]
Fu, Xing [1 ]
Lu, Rongguo [2 ]
Liu, Yong [2 ]
Gong, Mali [1 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Optoelect Informat, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
Graphene; integrated optics devices; modulators; optoelectronics; waveguides; MASSLESS DIRAC FERMIONS; ELECTROOPTIC MODULATOR; PHOTONICS;
D O I
10.1109/JPHOT.2018.2789894
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The concept of incorporating graphene into nanophotonic waveguides has pullulated into massive broadband optoelectronic applications with compact footprint. We theoretically demonstrate that by solely altering the dimension design of graphene-laminated silicon waveguides, the phase, amplitude, and polarization of the fundamental propagating modes can all be effectively tailored under different bias voltages. Different device functionalities, including optical amplitude/phase modulators and polarizers, are ascribed into the devising of the effective mode index. A comprehensive analysis and unified design scenarios upon waveguide geometries are summarized, with fabrication robustness and moderate process complexity. Moreover, design examples are manifested. We report a TM-mode-based phase modulator, achieving a pi phase shift within an active length of 49.2 mu m with dual graphene layers. A feasible polarization-independent amplitude modulator is also demonstrated, where the discrepancy of the imaginary parts of the effective mode index between the two fundamental modes is kept at an order of 10(-5) over a broad wavelength range from 1.35 to 1.65 mu m.
引用
收藏
页数:17
相关论文
共 69 条
[1]   SILICON PHOTONICS Energy-efficient communication [J].
Asghari, Mehdi ;
Krishnamoorthy, Ashok V. .
NATURE PHOTONICS, 2011, 5 (05) :268-270
[2]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[3]  
Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/nphoton.2011.102, 10.1038/NPHOTON.2011.102]
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[6]   Large area few-layer graphene/graphite films as transparent thin conducting electrodes [J].
Cai, Weiwei ;
Zhu, Yanwu ;
Li, Xuesong ;
Piner, Richard D. ;
Ruoff, Rodney S. .
APPLIED PHYSICS LETTERS, 2009, 95 (12)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Optical phase modulators using deformable waveguides actuated by micro-electro-mechanical systems [J].
Chiu, Wei-Chao ;
Chang, Chun-Che ;
Wu, Jiun-Ming ;
Lee, Ming-Chang M. ;
Shieh, Jia-Min .
OPTICS LETTERS, 2011, 36 (07) :1089-1091
[9]   Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters [J].
de Oliveira, Rafael E. P. ;
de Matos, Christiano J. S. .
SCIENTIFIC REPORTS, 2015, 5
[10]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720