TT-SLAM Dense Monocular SLAM for Planar Environments

被引:7
作者
Wang, Xi [1 ]
Christie, Marc [1 ]
Marchand, Eric [1 ]
机构
[1] Univ Rennes, Irisa, CNRS, INRIA, Rennes, France
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
关键词
TRACKING;
D O I
10.1109/ICRA48506.2021.9561164
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel visual SLAM method with dense planar reconstruction using a monocular camera: TT-SLAM. The method exploits planar template-based trackers (TT) to compute camera poses and reconstructs a multi-planar scene representation. Multiple homographies are estimated simultaneously by clustering a set of template trackers supported by superpixelized regions. Compared to RANSAC-based multiple homographies method [l], data association and keyframe selection issues are handled by the continuous nature of template trackers. A non-linear optimization process is applied to all the homographies to improve the precision in pose estimation. Experiments show that the proposed method outperforms RANSAC-based multiple homographies method [I] as well as other dense method SLAM techniques such as LSD-SLAM or DPPTAM, and competes with keypoint-based techniques like ORB-SLAM while providing dense planar reconstructions of the environment.
引用
收藏
页码:11690 / 11696
页数:7
相关论文
共 50 条
[41]   FragmentFusion: A Light-weight SLAM Pipeline for Dense Reconstruction [J].
Rueckert, Darius ;
Innmann, Matthias ;
Stamminger, Marc .
ADJUNCT PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT 2019), 2019, :342-347
[42]   Moving Object Detection with Photometric Monocular SLAM on a Moving Ego-Platform [J].
Golla, Lokesh Chandra Sekhar ;
Molander, Soren ;
Duong-Van Nguyen .
2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, :1-7
[43]   GDO-SLAM: Visual-Based Ground-Aware Decoupling Optimized SLAM for UGV in Outdoor Environments [J].
Wu, Chu ;
Li, Xu ;
Kong, Dong ;
Hu, Yue ;
Ni, Peizhou .
IEEE SENSORS JOURNAL, 2024, 24 (22) :37218-37228
[44]   Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality [J].
Jinyu L. ;
Bangbang Y. ;
Danpeng C. ;
Nan W. ;
Guofeng Z. ;
Hujun B. .
Virtual Reality and Intelligent Hardware, 2019, 1 (04) :386-410
[45]   Dynamic SLAM With 3-D Gaussian Splatting Supporting Monocular Sensing [J].
Zhou, Hongxing ;
Chen, Juan ;
Li, Zhiqing .
IEEE SENSORS JOURNAL, 2025, 25 (12) :21900-21910
[46]   DRV-SLAM: An Adaptive Real-Time Semantic Visual SLAM Based on Instance Segmentation Toward Dynamic Environments [J].
Ji, Qiang ;
Zhang, Zikang ;
Chen, Yifu ;
Zheng, Enhui .
IEEE ACCESS, 2024, 12 :43827-43837
[47]   RDMO-SLAM: Real-Time Visual SLAM for Dynamic Environments Using Semantic Label Prediction With Optical Flow [J].
Liu, Yubao ;
Miura, Jun .
IEEE ACCESS, 2021, 9 :106981-106997
[48]   SGD-SLAM: a visual SLAM system with a dynamic feature rejection strategy combining semantic and geometric information for dynamic environments [J].
Chen, Yuqian ;
Lu, Tongwei .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
[49]   FND-SLAM: A SLAM System Using Feature Points and NeRF in Dynamic Environments Based on RGB-D Sensors [J].
Yang, Xianben ;
Wang, Tao ;
Wang, Yangyang ;
Lang, Congyan ;
Jin, Yi ;
Li, Yidong .
IEEE SENSORS JOURNAL, 2025, 25 (05) :8598-8610
[50]   A Robust Approach for a Filter-Based Monocular Simultaneous Localization and Mapping (SLAM) System [J].
Munguia, Rodrigo ;
Castillo-Toledo, Bernardino ;
Grau, Antoni .
SENSORS, 2013, 13 (07) :8501-8522