TT-SLAM Dense Monocular SLAM for Planar Environments

被引:7
作者
Wang, Xi [1 ]
Christie, Marc [1 ]
Marchand, Eric [1 ]
机构
[1] Univ Rennes, Irisa, CNRS, INRIA, Rennes, France
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
关键词
TRACKING;
D O I
10.1109/ICRA48506.2021.9561164
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel visual SLAM method with dense planar reconstruction using a monocular camera: TT-SLAM. The method exploits planar template-based trackers (TT) to compute camera poses and reconstructs a multi-planar scene representation. Multiple homographies are estimated simultaneously by clustering a set of template trackers supported by superpixelized regions. Compared to RANSAC-based multiple homographies method [l], data association and keyframe selection issues are handled by the continuous nature of template trackers. A non-linear optimization process is applied to all the homographies to improve the precision in pose estimation. Experiments show that the proposed method outperforms RANSAC-based multiple homographies method [I] as well as other dense method SLAM techniques such as LSD-SLAM or DPPTAM, and competes with keypoint-based techniques like ORB-SLAM while providing dense planar reconstructions of the environment.
引用
收藏
页码:11690 / 11696
页数:7
相关论文
共 50 条
[31]   Automatic Relocalization and Loop Closing for Real-Time Monocular SLAM [J].
Williams, Brian ;
Klein, Georg ;
Reid, Ian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (09) :1699-1712
[32]   ONeK-SLAM: A Robust Object-level Dense SLAM Based on Joint Neural Radiance Fields and Keypoints [J].
Zhuge, Yue ;
Luo, Haiyong ;
Chen, Runze ;
Chen, Yushi ;
Yan, Jiaquan ;
Jiang, Zhuqing .
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, :10245-10252
[33]   DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments [J].
Wei, Wang ;
Xia, Changgao ;
Han, Jiangyi .
APPLIED SCIENCES-BASEL, 2025, 15 (08)
[34]   Vision-audio fusion SLAM in dynamic environments [J].
Zhang, Tianwei ;
Zhang, Huayan ;
Li, Xiaofei .
CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) :1364-1373
[35]   TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments [J].
Zhang, Yongchao ;
Li, Yuanming ;
Chen, Pengzhan ;
Xie, Yuanlong ;
Zheng, Shiqi ;
Hu, Zhaozheng ;
Wang, Shuting .
SENSORS, 2023, 23 (24)
[36]   RLD-SLAM: A Robust Lightweight VI-SLAM for Dynamic Environments Leveraging Semantics and Motion Information [J].
Zheng, Zengrui ;
Lin, Shifeng ;
Yang, Chenguang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (11) :14328-14338
[37]   MSSD-SLAM: Multifeature Semantic RGB-D Inertial SLAM With Structural Regularity for Dynamic Environments [J].
Wang, Yanan ;
Tian, Yaobin ;
Chen, Jiawei ;
Chen, Cheng ;
Xu, Kun ;
Ding, Xilun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[38]   On depth usage for a lightened visual SLAM in small environments [J].
Boucher, Maxime ;
Ababsa, Fakhreddine ;
Mallem, Malik .
6TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2014, 2014, 39 :28-34
[39]   SLAM in dynamic environments via ML-RANSAC [J].
Bahraini, Masoud S. ;
Bozorg, Mohammad ;
Rad, Ahmad B. .
MECHATRONICS, 2018, 49 :105-118
[40]   DynaVINS: A Visual-Inertial SLAM for Dynamic Environments [J].
Song, Seungwon ;
Lim, Hyungtae ;
Lee, Alex Junho ;
Myung, Hyun .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) :11523-11530